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Fourier Transform of comb(x)

In class, we stated without proof that the Fourier transform of comb(x) is comb(kx).   There are number of
ways to motivate and demonstrate this result [see references below].  The derivation here is similar to that
in references 2 and 3.  Since comb(x)  is a periodic “function” with period X = 1, we can think of
expanding it  as a Fourier series
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Thus, the Fourier series expansion is 
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useful to sketch out what this infinite series looks like, and convince yourself that it is plausible for the
sum to yield a comb function.  We can now take the Fourier Transform of the Fourier series expansion to
obtain
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