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Solution to Homework 3, Problem 3b

Multiplication in the Fourier domain results in convolution in the image domain so that:
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We use the properties of the delta function and the definition of the comb function to write:
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In class we derived the result that
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With a=2L and b=-1/2, we may write
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This is just a modulated train of delta functions with spacing of 2L, with amplitudes of 2L for n
even and amplitudes of —2L for n odd. Since there was no k_dependence in the sampling

function, the full 2D inverse Fourier transform is 2Ld(x) E(S( y- n2L)(— 1)". Convolving this with
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m(x,y) =8(x)(8(y - L) +8(y + L)) yields 2L8(x) i[é(y ~n2L-L)-(y- n2L+L)](-1)". In class, we
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showed graphically that this could be written as 4Ld(x) E[é(y -n2L- L)](— 1)". To show this in

a more rigorous fashion, we can split the sum into two infinite sums and use the substitution
n'=n+l1 to write
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