Bioengineering 280A Principles of Biomedical Imaging

Fall Quarter 2004 MRI Lecture 1

TT. Liu, BE280A, UCSD Fall 2004

Today's Topics

- The concept of spin
- Precession of magnetic spin
- Relaxation
- Bloch Equation

Spin

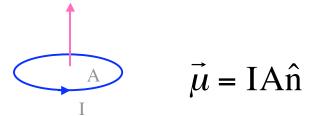
- Intrinsic angular momentum of elementary particles -- electrons, protons, neutrons.
- Spin is quantized. Key concept in Quantum Mechanics.

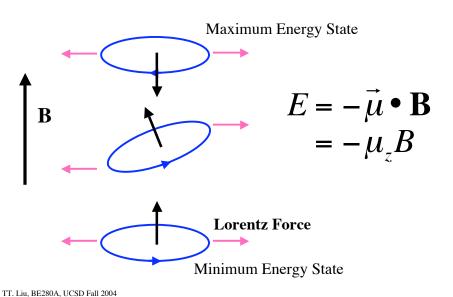
TT. Liu, BE280A, UCSD Fall 2004

The History of Spin

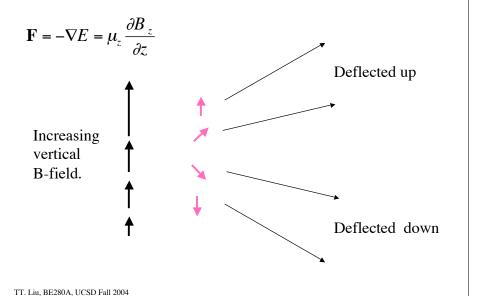
- 1921 Stern and Gerlach observed quantization of magnetic moments of silver atoms
- 1925 Uhlenbeck and Goudsmit introduce the concept of spin for electrons.
- 1933 Stern and Gerlach measure the effect of nuclear spin.
- 1937 Rabi predicts and observes nuclear magnetic resonance.

Classical Magnetic Moment

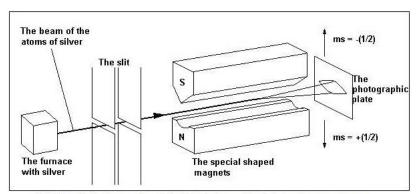




Force in a Field Gradient



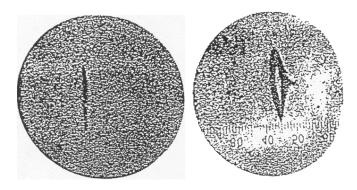
Stern-Gerlach Experiment



The Stern-Gerlach experiment. On the photographic plate are two clear tracks.

Image from http://library.thinkquest.org/19662/high/eng/exp-stern-gerlach.html?tqskip=1

Stern-Gerlach Experiment



 $Image\ from\ http://library.thinkquest.org/19662/high/eng/exp-stern-gerlach.html?tqskip{=}1$

TT. Liu, BE280A, UCSD Fall 2004

Quantization of Magnetic Moment

The key finding of the Stern-Gerlach experiment is that the magnetic moment is quantized. That is, it can only take on discrete values.

In the experiment, the finding was that

$$\mu_z = + \mu_0 \text{ OR} - \mu_0$$

Magnetic Moment and Angular Momentum

A charged sphere spinning about its axis has angular momentum and a magnetic moment.

This is a classical analogy that is useful for understanding quantum spin, but remember that it is only an analogy!

Relation: $\mu = \gamma S$ where γ is the gyromagnetic ratio and S is the spin angular momentum.

TT. Liu, BE280A, UCSD Fall 2004

Quantization of Angular Momentum

Because the magnetic moment is quantized, so is the angular momentum.

In particular, the z-component of the angular momentum Is quantized as follows:

$$S_z = m_s \hbar$$

$$m_s \in \{-s, -(s-1), \dots s\}$$

s is an integer or half intege

Nuclear Spin Rules

Number of Protons	Number of Neutrons	Spin	Examples
Even	Even	0	¹² C, ¹⁶ O
Even	Odd	j/2	¹⁷ O
Odd	Even	j/2	¹ H, ²³ Na, ³¹ P
Odd	Odd	j	² H

TT. Liu, BE280A, UCSD Fall 2004

Hydrogen Proton

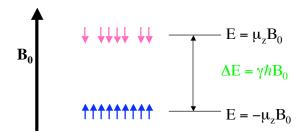
Spin 1/2

$$S_z = \begin{cases} +\hbar/2 \\ -\hbar/2 \end{cases}$$

$$S_z = \begin{cases} +\hbar/2 \\ -\hbar/2 \end{cases}$$

$$\mu_z = \begin{cases} +\gamma\hbar/2 \\ -\gamma\hbar/2 \end{cases}$$

Boltzmann Distribution



$$\frac{\text{Number Spins Up}}{\text{Number Spins Down}} = \exp(-\Delta E/kT)$$

Ratio = 0.999990 at 1.5T !!!

Corresponds to an excess of about 10 up spins per million

TT. Liu, BE280A, UCSD Fall 2004

Equilibrium Magnetization

$$\mathbf{M}_{0} = N \langle \mu_{z} \rangle = N \left(\frac{n_{up} (-\mu_{z}) + n_{down} (\mu_{z})}{N} \right)$$

$$= N \mu \frac{e^{\mu_{z}B/kT} - e^{-\mu_{z}B/kT}}{e^{\mu_{z}B/kT} + e^{-\mu_{z}B/kT}}$$

$$\approx N \mu_{z}^{2} B/(kT)$$

$$= N \gamma^{2} \hbar^{2} B/(4kT)$$

N = number of nuclear spins per unit volume Magnetization is proportional to applied field.

Bigger is better

3T Human imager at UCSD.

7T Human imager at U. Minn.



7T Rodent Imager at UCSD

9.4T Human imager at UIC

TT. Liu, BE280A, UCSD Fall 2004

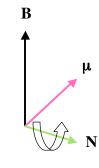
Gyromagnetic Ratios

Nucleus	Spin	Magnetic Moment	$\gamma/(2\pi)$ (MHz/Tesla)	Abundance
¹ H	1/2	2.793	42.58	88 M
²³ Na	3/2	2.216	11.27	80 mM
³¹ P	1/2	1.131	17.25	75 mM

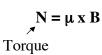
TT. Liu, BE280A, UCSD Fall 2004

Source: Haacke et al., p. 27

Torque

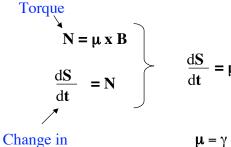


For a non-spinning magnetic moment, the torque will try to align the moment with magnetic field (e.g. compass needle)



TT. Liu, BE280A, UCSD Fall 2004

Precession



$$\frac{dS}{dt} = \mu \times B$$

$$\mu = \gamma S$$

$$\uparrow$$

$$\frac{d\mu}{dt} = \mu \times \gamma B$$

Relation between magnetic moment and angular momentum

TT. Liu, BE280A, UCSD Fall 2004

Angular momentum

Precession

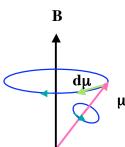
$$\frac{\mathrm{d}\mu}{\mathrm{d}t} = \mu \, \mathbf{x} \, \mathbf{\gamma} \mathbf{B}$$

Analogous to motion of a gyroscope

Precesses at an angular frequency of

$$\omega = \gamma \mathbf{B}$$

This is known as the **Larmor** frequency.



TT. Liu, BE280A, UCSD Fall 2004

Larmor Frequency

 $\omega = \gamma \mathbf{B}$ Angular frequency in rad/sec

 $f = \gamma B / (2 \pi)$ Frequency in cycles/sec or Hertz, Abbreviated Hz

For a 1.5 T system, the Larmor frequency is 63.86 MHz which is 63.86 million cycles per second. For comparison, KPBS-FM transmits at 89.5 MHz.

Note that the earth's magnetic field is about 50 μ T, so that a 1.5T system is about 30,000 times stronger.

Magnetization Vector

$$\mathbf{M} = \frac{1}{V} \sum_{\substack{\text{protons}\\ \text{in } V}} \mu_i$$

$$\frac{d\mathbf{M}}{dt} = \gamma \mathbf{M} \times \mathbf{B}$$

TT. Liu, BE280A, UCSD Fall 2004

Vector sum of the magnetic moments over a volume.

For a sample at equilibrium in a magnetic field, the transverse components of the moments cancel out, so that there is only a longitudinal component.

Equation of motion is the same form as for individual moments.

RF Excitation

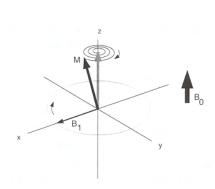
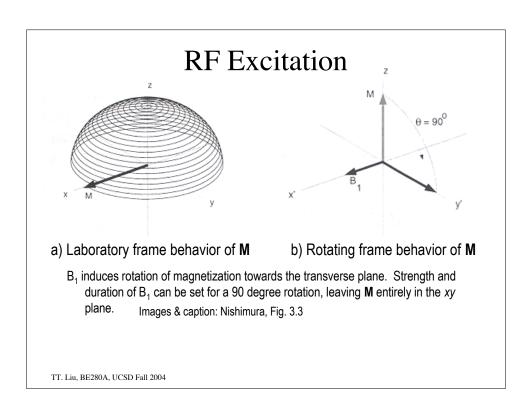


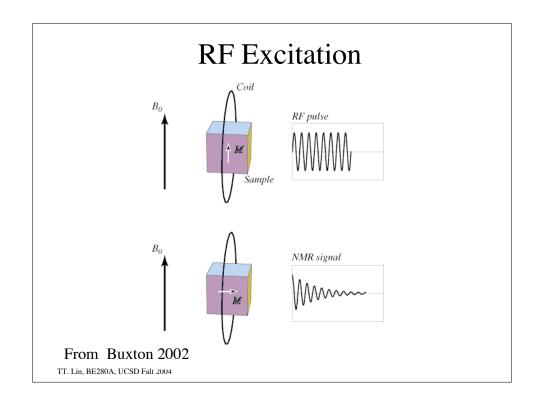
Image & caption: Nishimura, Fig. 3.2

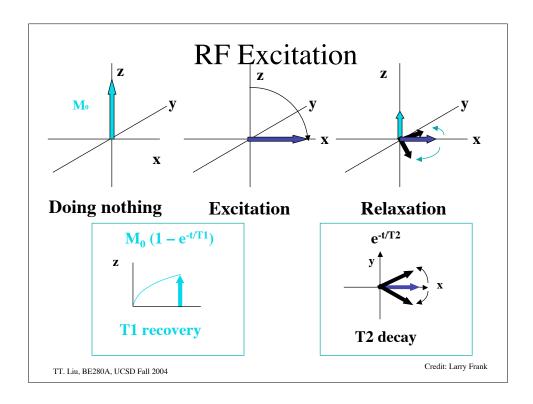
At equilibrium, net magnetizaion is parallel to the main magnetic field. How do we tip the magnetization away from equilibrium?

B₁ radiofrequency field tuned to Larmor frequency and applied in transverse (*xy*) plane induces nutation (at Larmor frequency) of magnetization vector as it tips away from the *z*-axis.

- lab frame of reference







Relaxation

An excitation pulse rotates the magnetization vector away from its equilibrium state (purely longitudinal). The resulting vector has both longitudinal $\mathbf{M}_{\mathbf{z}}$ and tranverse $\mathbf{M}_{\mathbf{x}\mathbf{v}}$ components.

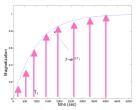
Due to thermal interactions, the magnetization will return to its equilibrium state with characteristic time constants.

 T_1 spin-lattice time constant, return to equilibrium of M_z

 T_2 spin-spin time constant, return to equilibrium of \mathbf{M}_{xy}

Longitudinal Relaxation

$$\frac{d\mathbf{M}_z}{dt} = -\frac{M_z - M_0}{T_1}$$

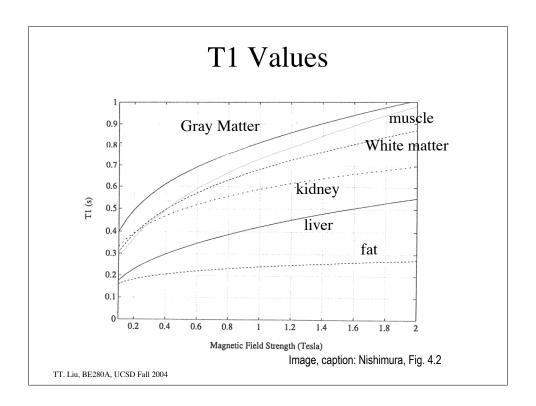


After a 90 degree pulse

$$M_{z}(t) = M_{0}(1 - e^{-t/T_{1}})$$

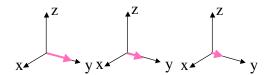
Due to exchange of energy between nuclei and the lattice (thermal vibrations). Process continues until thermal equilibrium as determined by Boltzmann statistics is obtained.

The energy ΔE required for transitions between down to up spins, increases with field strength, so that T_1 increases with **B**.



Transverse Relaxation

$$\frac{d\mathbf{M}_{xy}}{dt} = -\frac{M_{xy}}{T_2}$$



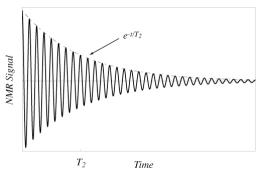
Each spin's local field is affected by the z-component of the field due to other spins. Thus, the Larmor frequency of each spin will be slightly different. This leads to a dephasing of the transverse magnetization, which is characterized by an exponential decay.

T₂ is largely independent of field. T₂ is short for low frequency fluctuations, such as those associated with slowly tumbling macromolecules.

TT. Liu, BE280A, UCSD Fall 2004

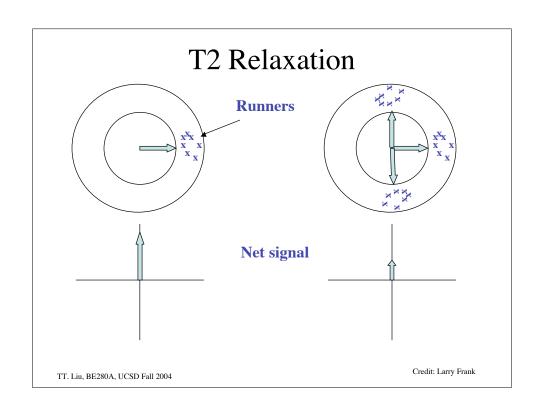
T2 Relaxation

Free Induction Decay (FID)



After a 90 degree excitation

$$M_{xy}(t) = M_0 e^{-t/T_2}$$



T2 Values

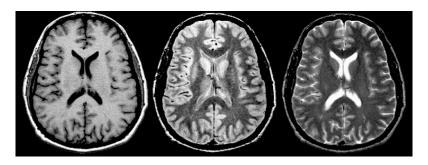
Tissue	T ₂ (ms)	
gray matter	100	
white matter	92	
muscle	47	
fat	85	
kidney	58	
liver	43	
CSF	4000	

Table: adapted from Nishimura, Table 4.2

Solids exhibit very short T₂ relaxation times because there are many low frequency interactions between the immobile spins.

On the other hand, liquids show relatively long T₂ values, because the spins are highly mobile and net fields average out.

Example



T₁-weighted

Density-weighted

T₂-weighted

TT. Liu, BE280A, UCSD Fall 2004

Bloch Equation

$$\frac{d\mathbf{M}}{dt} = \mathbf{M} \times \gamma \mathbf{B} - \frac{M_{x}\mathbf{i} + M_{y}\mathbf{j}}{T_{2}} - \frac{(M_{z} - M_{0})\mathbf{k}}{T_{1}}$$
Precession

Transverse
Relaxation

Relaxation

i, j, k are unit vectors in the x,y,z directions.

Free precession about static field

$$\frac{d\mathbf{M}}{dt} = \mathbf{M} \times \gamma \mathbf{B}$$

$$= \gamma \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ M_x & M_y & M_z \\ B_x & B_y & B_z \end{vmatrix}$$

$$= \gamma \begin{pmatrix} \hat{i} (B_z M_y - B_y M_z) \\ -\hat{j} (B_z M_x - B_x M_z) \\ \hat{k} (B_y M_x - B_x M_y) \end{pmatrix}$$

TT. Liu, BE280A, UCSD Fall 2004

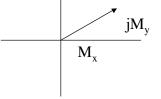
Free precession about static field

$$\begin{bmatrix} dM_x/dt \\ dM_y/dt \\ dM_z/dt \end{bmatrix} = \gamma \begin{bmatrix} B_z M_y - B_y M_z \\ B_x M_z - B_z M_x \\ B_y M_x - B_x M_y \end{bmatrix}$$
$$= \gamma \begin{bmatrix} 0 & B_z & -B_y \\ -B_z & 0 & B_x \\ B_y & -B_x & 0 \end{bmatrix} \begin{bmatrix} M_x \\ M_y \\ M_z \end{bmatrix}$$

Precession

$$\begin{bmatrix} dM_x/dt \\ dM_y/dt \\ dM_z/dt \end{bmatrix} = \gamma \begin{bmatrix} 0 & B_0 & 0 \\ -B_0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} M_x \\ M_y \\ M_z \end{bmatrix}$$

Useful to define $M = M_x + jM_y$



$$dM/dt = d/dt(M_x + iM_y)$$
$$= -j\gamma B_0 M$$

Solution is a time-varying phasor

$$M(t) = M(0)e^{-j\gamma B_0 t} = M(0)e^{-j\omega_0 t}$$

TT. Liu, BE280A, UCSD Fall 2004

Precession

$$\begin{split} M(t) &= M(0)e^{-j\omega_0 t} \\ &= \left(M_x(0)\cos\omega_0 t + M_y(0)\sin\omega_0 t\right) + j\left(M_y(0)\cos\omega_0 t - M_x(0)\sin\omega_0 t\right) \end{split}$$

In matrix form this is
$$\begin{bmatrix} M_x(t) \\ M_y(t) \end{bmatrix} = \begin{bmatrix} \cos \omega_0 t & \sin \omega_0 t \\ -\sin \omega_0 t & \cos \omega_0 t \end{bmatrix} \begin{bmatrix} M_x(0) \\ M_y(0) \end{bmatrix}$$

The full solution is then a rotation about the z-axis.

$$\begin{bmatrix} M_x(t) \\ M_y(t) \\ M_z(t) \end{bmatrix} = \begin{bmatrix} \cos \omega_0 t & \sin \omega_0 t & 0 \\ -\sin \omega_0 t & \cos \omega_0 t & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} M_x(0) \\ M_y(0) \\ M_z(0) \end{bmatrix}$$

$$= R_z \left(\omega_0 t \right) \begin{bmatrix} M_x(0) \\ M_y(0) \\ M_z(0) \end{bmatrix}$$