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Bioengineering 280A
Principles of Biomedical Imaging
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MRI Lecture 3
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Topics

• Review signal equation
• Sampling requirements
• Slice Selection
• Gradient Echo and Spin Echo
• Image Contrast
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MR signal is Fourier Transform

€ 

s(t) = m(x,y)exp − j2π kx (t)x + ky (t)y( )( )y∫x∫ dxdy

= M kx (t),ky (t)( )
= F m(x,y)[ ] kx (t ),ky (t )

x t

m(x)
s(t)
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K-space

€ 

s(t) = M kx (t),ky (t)( ) = F m(x,y)[ ] kx ( t ),ky ( t )

€ 

kx (t) =
γ
2π

Gx (τ )dτ0

t
∫

ky (t) =
γ
2π

Gy (τ )dτ0

t
∫

At each point in time, the received signal is the Fourier
transform of the object

evaluated at the spatial frequencies:

Thus, the gradients control our position in k-space. The
design of an MRI pulse sequence requires us to
efficiently cover enough of k-space to form our image.
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There is nothing that nuclear spins
will not do for you, as long as you
treat them as human beings.

                                      Erwin Hahn
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Interpretation

∆x 2∆x-∆x-2∆x 0

∆B(z)=Gyz
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exp − j2π 1
8Δx
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K-space trajectory
Gx(t)

t

€ 

kx (t) =
γ
2π

Gx (τ )dτ0

t
∫

t1 t2

kx

ky

€ 

kx (t1)

€ 

kx (t2)
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K-space trajectory
Gx(t)

t
t1 t2

ky

€ 

kx (t1)

€ 

kx (t2)

Gy(t)

t3 t4
kx

€ 

ky (t4 )

€ 

ky (t3)
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K-space trajectory
Gx(t)

t
t1 t2

ky

Gy(t)

kx
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Spin-Warp
Gx(t)

t1

ky

Gy(t)

kx
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Spin-Warp
Gx(t)

t1 ky

Gy(t)

kx
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Spin-Warp Pulse Sequence

Gx(t)

ky

kx

Gy(t)

RF
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K-space trajectories

kx

ky ky

kx

EPI Spiral

Credit: Larry Frank
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X =

* =

1/∆k
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Nyquist Conditions

FOVX

FOVY

1/∆kX

1/∆kY

1/∆kY> FOVY

1/∆kX> FOVX
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Aliasing
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Sampling in ky

kx

ky

Gx(t)

Gy(t)

RF

Δky

τy

Gyi

€ 

Δky =
γ
2π

Gyiτ y

€ 

FOVy =
1
Δky
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Sampling in kx

x Low pass
Filter ADC

x Low pass
Filter ADC€ 

cosω0t

€ 

sinω0t

RF 
Signal

One I,Q sample every Δt

M= I+jQ

I

Q

Note: In practice, there are number of ways of
implementing this processing.
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Sampling in kx

kx

ky

€ 

Δkx =
γ
2π

GxrΔt

€ 

FOVx =
1
Δkx

Gx(t)

t1

ADC

Gxr

Δt
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Resolution



11

TT Liu BE280A, UCSD Fall 2004

Resolution
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Effective Width

€ 

wE =
1

w(0)
w(x)dx

−∞

∞

∫

wE

€ 

wE =
1
1

sinc(Wkx x)dx−∞

∞

∫

= F sinc(Wkx x)[ ]
kx = 0

=
1
Wkx

rect kx
Wkx

 

 
  

 

 
  
kx = 0

=
1
Wkx

Example

€ 

1
Wkx

€ 

−
1
Wkx
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Resolution and spatial frequency

€ 

2
Wkx

€ 

With a window of width Wkx  the highest spatial frequency is Wkx /2.
This corresponds to a spatial period of 2/Wkx .

€ 

1
Wkx

= Effective Width =δx = Resolution
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Resolution

€ 

δx =
1
Wkx

= 1
2kx,max

 = 1
γ

2π
Gxrτ x

€ 

Wkx
€ 

Wky
Gx(t)

Gxr

€ 

τ x

€ 

δy =
1
Wky

= 1
2ky,max

 = 1
γ

2π
2Gypτ y

Gy(t)

τy
€ 

Gyp
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Example

€ 

Goal :
FOVx = FOVy = 25.6 cm
δx = δy = 0.1  cm

€ 

Readout  Gradient :

FOVx =
1

γ
2π

GxrΔt

Pick Δt = 32 µsec

Gxr =
1

FOVx
γ

2π
Δt

=
1

25.6cm( ) 42.57 ×106T−1s−1( ) 32 ×10−6 s( )

                            = 2.8675 ×10−5 T/cm
                           = .28675 G/cm

1 Gauss =  1×10−4  Tesla

t1

ADC

Gxr

Δt
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Example

€ 

Readout  Gradient :

δx =
1

γ
2π

Gxrτ x

τ x =
1

δx
γ

2π
Gxr

=
1

0.1cm( ) 4257 G−1s−1( ) 0.28675 G/cm( )

                            = 8.192 ms
                            = NreadΔt
where 

Nread =
FOVx
δx

= 256

Gx(t)

Gxr

€ 

τ x
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Example

€ 

Phase - Encode Gradient :

FOVy =
1

γ
2π

Gyiτ y

Pick τ y = 4.096 msec

Gyi =
1

FOVy
γ

2π
τ y

=
1

25.6cm( ) 42.57 ×106T−1s−1( ) 4.096 ×10−3 s( )

                            =  2.2402 ×10-7  T/cm
                           = .00224 G/cm

τy

Gyi
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Example

€ 

Phase - Encode  Gradient :
δy =

1
γ

2π
2Gypτ y

Gyp =
1

δy 2 γ
2π

τ y

=
1

0.1cm( ) 4257 G−1s−1( ) 4.096 ×10-3 s( )
                            =  0.2868 G/cm

                            =
Np

2
Gyi

where 

Np =
FOVy
δy

= 256

Gy(t)

τy
€ 

Gyp



15

TT Liu BE280A, UCSD Fall 2004

Sampling

€ 

Wkx
€ 

Wky

In practice, an even number
(typically power of 2) sample is
usually  taken in each direction to
take advantage of the Fast Fourier
Transform (FFT) for reconstruction.

ky

y

FOV/4

1/FOV

4/FOV

FOV

TT Liu BE280A, UCSD Fall 2004

Gibbs Artifact

256x256 image 256x128 image

Images from http://www.mritutor.org/mritutor/gibbs.htm

* =



16

TT Liu BE280A, UCSD Fall 2004

Apodization

Images from http://www.mritutor.org/mritutor/gibbs.htm

* =

rect(kx)
h(kx )=1/2(1+cos(2πkx)

Hanning Window

sinc(x)

0.5sinc(x)+0.25sinc(x-1)
+0.25sinc(x+1)
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Aliasing and Bandwidth

x LPF ADC

ADC€ 

cosω0t

€ 

sinω0t

RF 
Signal

I

QLPF

x

*

x
f

t

x

t

FOV 2FOV/3

Temporal filtering in
the readout direction
limits the readout
FOV. So there should
never be aliasing in the
readout direction.
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Aliasing and Bandwidth

Slower

Faster
x

f

Lowpass filter
in the readout direction to
prevent aliasing.

readout

FOVx

B=γGxrFOVx
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Slice Selection
Recall, that we can tip spins away from their equilibrium state
by applying a radio-frequency pulse at the Larmor frequency.

In the presence of a spatial gradient Gz.  spins in an interval -
Δz/2 to -Δz/2  have Larmor frequencies ranging from
ω0-γGzΔz/2  to ω0 +γGzΔz/2.  In order to tip all the spins in
this interval, we can apply an RF pulse with energy that is
spaced over this frequency interval.
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Slice Selection
zslice

f

rect(f/W)

W=γGzΔz/(2π)

Δz

sinc(Wt)
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Slice Selection

Gx(t)

Gy(t)

RF

Gz(t)
Slice select gradient

Slice refocusing gradient
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Gradient Echo

Gx(t)

Gy(t)

RF

Gz(t)
Slice select gradient

Slice refocusing gradient

ADC

Spins all in
phase at kx=0
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Static Inhomogeneities
In the ideal situation, the static magnetic field is totally uniform
and the reconstructed object is determined solely by the applied
gradient fields. In reality, the magnet is not perfect and will not
be totally uniform. Part of this can be addressed by additional
coils called “shim” coils, and the process of making the field
more uniform is called “shimming”.  In the old days this was
done manually, but modern magnets can do this automatically.

In addition to magnet imperfections, most biological samples
are inhomogeneous and this will lead to inhomogeneity in the
field. This is because, each tissue has different magnetic
properties and will distort the field.
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Static Inhomogeneities

  

€ 

sr(t) = M(r r ,t)
V∫ dV

= M(x,y,z,0)e− t /T2 (
r 
r )e− jω0te− jωE

r 
r ( )t exp − jγ

r 
G (τ) ⋅ r r dτ

o

t
∫( )z∫y∫x∫ dxdydz

The spatial nonuniformity in the field can be modeled by adding
an additional term to our signal equation.

The effect of this nonuniformity is to cause the spins to dephase
with time and thus for the signal to decrease more rapidly. To first
order this can be modeled as an additional decay term of the form

  

€ 

sr(t) = M(x,y,z,0)e− t /T2 (
r 
r )e− t / ′ T 2 (

r 
r )e− jω0t exp − jγ

r 
G (τ) ⋅ r r dτ

o

t
∫( )z∫y∫x∫ dxdydz
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T2
* decay

  

€ 

exp −t /T2
* v r ( )( )

The overall decay has the form.

€ 

1
T2
* =

1
T2

+
1
′ T 2

where

Due to random motions of spins.
Not reversible. 

Due to static
inhomogeneities. Reversible
with a spin-echo sequence.
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T2
* decay

Gradient echo sequences exhibit T2
* decay. 

Gx(t)

Gy(t)

RF

Gz(t)
Slice select gradient

Slice refocusing gradient

ADC

TE = echo time

Gradient echo has
exp(-TE/T2

*)

weighting
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Spin Echo
Discovered by Erwin Hahn in 1950. 

There is nothing that nuclear spins will not do for you, as
long as you treat them as human beings.  Erwin Hahn

Image: Larry Frank

τ τ180º

The spin-echo can refocus the dephasing of spins due
to static inhomogeneities. However, there will still be
T2 dephasing due to random motion of spins.
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Spin Echo

Image: Larry Frank

Phase at time  τ 

τ τ180º

Phase after 180 pulse
  

€ 

ϕ(τ) = −ωE (
r r )dt =

0

τ

∫ −ωE (
r r )τ

  

€ 

ϕ(τ +) =ωE (
r r )τ

Phase at time  2τ 

  

€ 

ϕ(2τ ) = −ωE (
r r )τ +ωE (

r r )τ = 0
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Spin Echo Pulse Sequence

Gx(t)

Gy(t)

RF

Gz(t)

ADC

τ τ 

90 180

TE = echo time
€ 

exp(−t /T2)
€ 

exp(− t −TE / ′ T 2)
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Image Contrast

Different tissues exhibit different relaxation rates, T1,  T2,
and T2

*.  In addition different tissues can have different
densities of protons.  By adjusting the pulse sequence, we
can create contrast between the tissues.  The most basic way
of creating contrast is adjusting the two sequence
parameters: TE (echo time) and TR (repetition time).
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Saturation Recovery Sequence
90 90 90

TR TR

TE TE

€ 

I(x,y) = ρ(x,y) 1− e−TR /T1 (x,y )[ ]e−TE /T2* (x,y )

€ 

I(x,y) = ρ(x,y) 1− e−TR /T1 (x,y )[ ]e−TE /T2 (x,y )

Gradient Echo

Spin Echo

90 90 90

TE

180 180

TR
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T1-Weighted Scans

€ 

I(x,y) ≈ ρ(x,y) 1− e−TR /T1 (x,y )[ ]

Make TE very short compared to either T2  or T2
*.  The resultant

image has both proton and T1 weighting.

TT Liu BE280A, UCSD Fall 2004

T2-Weighted Scans

€ 

I(x,y) ≈ ρ(x,y)e−TE /T2

Make TR very long compared to T1 and use a spin-echo pulse
sequence. The  resultant image has both proton and T2 weighting.
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Proton Density Weighted Scans

€ 

I(x,y) ≈ ρ(x,y)

Make TR very long compared to T1 and use a very short TE. The
resultant image is proton density weighted.
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Example

T1-weighted T2-weightedDensity-weighted
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FLASH sequence
θ

TR TR

TE TE

€ 

I(x,y) = ρ(x,y)
1− e−TR /T1 (x,y )[ ]sinθ
1− e−TR /T1 (x,y ) cosθ[ ]

Gradient Echo

θ θ

€ 

θE = cos−1 exp(−TR /T1)( )
Signal intensity is maximized at the Ernst Angle
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Inversion Recovery

90

180

TI
TR

€ 

I(x,y) = ρ(x,y) 1− 2e−TI /T1 (x,y ) + e−TR /T1 (x,y )[ ]e−TE /T2 (x,y )

180

90

180 180

TE

Intensity is zero when inversion time is

€ 

TI = −T1 ln
1+ exp(−TR /T1)

2
 

  
 

  


