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Signals and Images
Discrete-time/space signal/image: continuous valued

function with a discrete time/space index, denoted as
s[n] for 1D, s/m,n] for 2D , etc.
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Continuous-time/space signal/image: continuous

valued function with a continuous time/space index,
denoted as s(t) or s(x) for 1D, s(x,y) for 2D, etc.
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Linearity (Addition)

-Il(x,y) —» RO —> K1(X7Y)~
. Lxy) — RO 5 K,xy) '

Lxy)+ L(xy) = K, (x,y) +Ky(x.y)
@ e
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Linearity (Scaling)

iy —— RO kxy) ’
| (xy)—> RD — a,K,(x,y) ¢
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Linearity

A system R is linear if for two inputs
I,(x,y) and L,(x,y) with outputs

R(I1(XaY))=K1(X’Y) and R(IZ(X,}’))=K2(X,}’)

the response to the weighted sum of inputs is the

weighted sum of outputs:

R(a,I;(x,y)+ a,I,(x,y))=a, K, (x,y)+ a,K,(X,y)
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Example
Are these linear systems?

g(x,yg@ﬁ g(xy)+10 g(x,y@ﬁ 10g(x,y)
10 10

g(xy)—— Moveup |+ Move right > g(x-1,y-1)
By 1 By 1
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Rectangle Function

1
0 [x]>1/2
II(x) =
1 |X|Sl/2
X
-1/2 1/2
Also called rect(x)
Tin
II(x,y) = II(x)II(y)
X
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Kronecker Delta Function

{1 forn=0
on] =

0 otherwise
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Kronecker Delta Function

S{m.n] 1 form=0,n=0
m,n] =
0 otherwise

O0[m-2,n]

3 1 1 3

0[m-2,n-2]
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Discrete, Signal Expansion
glnl="Y glkldln -k

k=—00

glm,n] = i i glk,l10[m - k,n - 1]

k=-00[=-00

3[n]
gln] o n

0 -0[n-1]
1

T

{ 1.58[n-2]

n
0
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Dirac Delta Function

Notation :

0(x) - 1D Dirac Delta Function

3(x,y) or *8(x,y) - 2D Dirac Delta Function
3(x,y,z) or *8(x,y,z) - 3D Dirac Delta Function

O(r) - N Dimensional Dirac Delta Function
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1D Dirac Delta Function

0(x) = Owhenx=0 and fié(x)dx =1
Can interpret the integral as a limit of the integral of an ordinary function
that is shrinking in width and growing in height, while maintaining a

constant area. For example, we can use a shrinking rectangle function

such that [~ 8(x)dx =lim [ M(x /7).
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2D Dirac Delta Function
8(x.y)= Owhenx’+y*=0and [~ [~ 8(x.y)dxdy =1
where we can consider the limit of the integral of an ordinary 2D function

that is shrinking in width but increasing in height while maintaining constant area.

o e e o
J_ [ oeydxdy =tim [ [~ oM (x /7.y /7)dxdy.
Useful fact: 8(x,y)=06(x)d(y)
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Generalized Functions

Dirac delta functions are not ordinary functions that are defined by their
value at each point. Instead, they are generalized functions that are defined

by what they do underneath an integral.

The most important property of the Dirac delta is the sifting property
f _w O(x - x,)g(x)dx = g(x,) where g(x) is a smooth function. This sifting

property can be understood by considering the limiting case

lim [ 7 TI(x/7)g(x)dx = g(x,)

g2(x)

H Area = (height)(width)= (g(x,)/ T) T = g(x,)

Xo
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Working with Dirac Delta Functions

What is é(ax - b)? What is dd(x)/dx?

How do we define generalized functions?

There are two main approaches:

1) Look at the limit of an integral with sequences.

2) Consider the behavior of the function when integrated with a

nice test function. Two generalized functions §,(¢) and 6,(¢) are

equivalent in the distributional sense when f _z&l(t)qb(t)dt = f »Z(Sz(t)ql)(t)dt

Example: d(ax) =7?
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Representation of 1D Function

From the sifting property, we can write a 1D function as

glx) = f _m g(&)6(x - &)dE. To gain intuition, consider the approximation

© 1 x —nAx
g(x) = 2n=_wg(nAx)AxH( e )A;

g2(x)

I
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Representation of 2D Function

Similarly, we can write a 2D function as

gy = [ gEmdtx-Ey-n)dédn.

To gain intuition, consider the approximation

© © 1 x-nAx) 1 y —mAy
X,y) = nAx,mAy)—I1 —1II AxAy.
g( y) Em:-wZn:-wg( y) Ax ( Ax )Ay ( Ay ) Y

\V4
\

/
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Impulse Response

Intuition: the impulse response is the response of
a system to an input of infinitesimal width and
unit area.

Original

Image Blurred Image

Since any input can be thought of as the
weighted sum of impulses, a linear system is
characterized by its impulse response(s).
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Impulse Response
The impulse response characterizes the response of a system over all space to a

Dirac delta impulse function at a certain location.

h(x,;8) = L[é()cl - 5)] 1D Impulse Response
h(x,,y,:Em) = L[é()c1 &y, - n)] 2D Impulse Response
Y2
Vi h(xzv)b;gan)
Impulse at &,
X X2
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Superposition Integral
What is the response to an arbitrary function g(x,,y,)?

write g(xy) = [ [ g(Emd(x, - &y, —m)dEdn.

The response is given by
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Pinhole Magnification Ex%mple

a

In this example, an impulse at (£,) will yield an impulse

at (M&,Mn) where M = -b/a.
Thus, h(xz’yz;g’n) = L[‘S(x1 =&y - 77)] =0(x, - M§&,y, - Mn).
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Pinhole Magnification Example

1., = [ [ gEmh(x,.y,:Em)dEdn

=C [ [ eEmd(x, - ME,y, - MidEdn

I(x 2y 2)

g(xj,yj)
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Space Invariance
If a system is space invariant, the impulse response depends only
on the difference between the output coordinates and the position of

the impulse and is given by h(x,,y,;&.n) =h(x,-&,y,-1n)
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Pinhole Magnification Ex%mple

- ="
a

h(xz’yz;gvn) = C5(X2 - M&ayz - M") .
Is this system space invariant?
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Pinhole Magnification Example

, the pinhole system space invariant.

)
b
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2D Convolution

For a space invariant linear system, the superposition integral
becomes a convolution integral.

10,9, = [ [ gEmh(x,.y,:EmdEdn

= f Z f Z g&E.nh(x,-8&,y, -n)d&dn
= 8(Xx,y,) **h(x3,y,)

where ** denotes 2D convolution. This will sometimes be
abbreviated as *, e.g. I(x,, y,)= g(x,, ¥,)*h(x,, y,).
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1D Convolution
For completeness, here is the 1D version.

I(x) = [ g(&)h(x:E)dE

= [T e@h(x-E)E
= g(x) * h(x)

Useful fact:

g(x)=0(x~A) = [ g(E)d(x - A-E)dE
=g(x-4)
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1D Convolution Review

g(x)#h(x)= [ g(&)h(x-E)dE

Basic Rule: Flip one function, slide it past the other function,
and integrate as you go.

g(x)=rect(x) h(x)=rect(x-1/2)
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1D Convolution Review
h(-12-8) | g(®)

l I(x)
h-5)
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h(1/2-§)

h(3/2-§)

[
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2D Convolution Example

g(x)= &(x+1/2,y) + &(x,y) h(x)=rect(x,y)
y y
o—— X
-12 12

I(x,y)=g(x)**h(x,y)
x
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2D Convolution Example

+ +

20 40 60 80 100 120 20 40 60 80 100 120 20 40 60 80 100 120

+ +

20 40 60 80 100 120 20 40 60 80 100 120 20 40 60 80 100 120
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Summary

1. The response to a linear system can be
characterized by a spatially varying impulse
response and the application of the superposition
integral.

2. A shift invariant linear system can be
characterized by its impulse response and the
application of a convolution integral.

3. Dirac delta functions are generalized functions.
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Pinhole Magnification Example

1Ge0,y) = [ [ gEmh(x,.y,:EmdEdn

= [ [ gEmd(x, - ME.y, - Mu)dEdn

after substituting &' = M& and n’' = M7, we obtain

1 = po ) , o
= s M 1Mo, £y, g dn
1
=Wg(x2/M,y2/M)**5(x27y2)

1
=Wg(x2/M’Y2/M)
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