Bioengineering 280A Principles of Biomedical Imaging

> Fall Quarter 2004 Lecture 3 1D Fourier Transforms

Thomas Liu, BE280A, UCSD, Fall 2004

Topics 1. Signal Representations 2. Some Linear Algebra 3. 1D Fourier Transform 4. Transform Pairs 5. FT Properties

Orthogonality Some other notations for the inner product : $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y} = \mathbf{x}^T \mathbf{y}$ Also, recall that the angle between the two vectors is given by $\cos \theta = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \| \| \mathbf{y} \|}$ This gives rise to the famous Cauchy - Schwarz Inequality $|\langle \mathbf{x}, \mathbf{y} \rangle| \le \| \mathbf{x} \| \| \| \mathbf{y} \|$ Two vectors are orthogonal if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$, and therefore $\theta = \pi/2$.

Orthonormal basis

A set of vectors $S = \{\mathbf{b}_i\}$ forms an orthonormal basis, if $\langle \mathbf{b}_i, \mathbf{b}_j \rangle = 0$ for $i \neq j$, every basis vector is normalized to have unit length $\|\mathbf{b}_i\| = 1$, and any vector \mathbf{y} in the space can be expressed as a linear combination of the basis vectors, i.e. $\mathbf{y} = \sum_{k} c_k \mathbf{b}_k$.

Thomas Liu, BE280A, UCSD, Fall 2004

Finding Expansion Coefficients Define the basis matrix as $\mathbf{B} = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_N \end{bmatrix}$. Then any vector $\mathbf{y} = \mathbf{Bc} = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_N \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_N \end{bmatrix}$ Multiply both sides of the equation by \mathbf{B}^{-1} , to obtain $\mathbf{c} = \mathbf{B}^{-1}\mathbf{y}$. Because the basis vectors are orthonormal $\mathbf{B}^T \mathbf{B} = \mathbf{I}$, and therefore $\mathbf{B}^{-1} = \mathbf{B}^T$. So, we can also write $\mathbf{c} = \mathbf{B}^T \mathbf{y}$. By definition, **B** is an orthonormal or unitary matrix.

Expansion Coefficients

$$\mathbf{c} = \mathbf{B}^T \mathbf{y} = \begin{bmatrix} \mathbf{b}_1^T \\ \mathbf{b}_2^T \\ \vdots \\ \mathbf{b}_N^T \end{bmatrix} \mathbf{y} = \begin{bmatrix} \langle \mathbf{b}_1, \mathbf{y} \rangle \\ \langle \mathbf{b}_2, \mathbf{y} \rangle \\ \vdots \\ \langle \mathbf{b}_N, \mathbf{y} \rangle \end{bmatrix}$$

For any vector \mathbf{y} , the *i*th expansion coefficient is the inner product of the *i*th orthonormal basis vector with \mathbf{y} .

Thomas Liu, BE280A, UCSD, Fall 2004

Parseval's Theorem

$$\|\mathbf{c}\|^2 = \langle \mathbf{c}, \mathbf{c} \rangle = \mathbf{c}^T \mathbf{c} = \mathbf{y}^T \mathbf{B} \mathbf{B}^T \mathbf{y} = \mathbf{y}^T \mathbf{y} = \|\mathbf{y}\|^2$$

Exercise : Verify that $\mathbf{BB}^{T} = \mathbf{I}$ for an orthonormal basis set. This is referred to as the resolution of unity or resolution of identity.

An orthonormal expansion preserves length.

Fourier Basis $x_{m}[\mathbf{n}] = \frac{1}{2} \exp(-j2\pi mn/4) \text{ for } n = 0,1,2,3$ $\mathbf{B} = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix}$ As an exercise, verify that $\mathbf{B}^{H}\mathbf{B} = \mathbf{I}$, where H denotes a Hermitian tranpose -- i.e. conjugate every term and take the tranpose.

Recap - Finite Dimensional Case

Matrix Notation

 $\mathbf{y} = \mathbf{B}\mathbf{c}$ where $\mathbf{c} = \mathbf{B}^T\mathbf{y}$

Signal notation

$$y[n] = \sum_{i=1}^{N} c_i b_i[n] = \sum_{i=1}^{N} \langle y[n], b_i[n] \rangle b_i[n]$$

Thomas Liu, BE280A, UCSD, Fall 2004

Infinite Dimensional Expansions

Discrete-Time Series Expansion

$$y[n] = \sum_{i=-\infty}^{\infty} c_i b_i[n] \quad c_i = \langle b_i[n], y[n] \rangle$$

Continuous-Time Series Expansion

$$y(t) = \sum_{i=-\infty}^{\infty} c_i b_i(t) \quad c_i = \left\langle b_i(t), y(t) \right\rangle$$

Continuous-Time Integral Expansion

$$y(t) = \int_{-\infty}^{\infty} c_f b_f(t) df \quad c_f = \left\langle b_f(t), y(t) \right\rangle$$

Expansions with Delta Functions

Discrete-Time Series Expansion

$$y[n] = \sum_{k=-\infty}^{\infty} c_k \delta[k-n] \text{ where } c_k = \langle \delta[k-n], y[n] \rangle = y[k]$$
$$= \sum_{k=-\infty}^{\infty} y[k] \delta[k-n]$$

Continuous-Time Integral Expansion

$$y(t) = \int_{-\infty}^{\infty} c_{\tau} \delta(t-\tau) d\tau \quad \text{where } c_{\tau} = \int_{-\infty}^{\infty} y(\tau) \delta(t-\tau) d\tau = y(t)$$
$$= \int_{-\infty}^{\infty} y(\tau) \delta(t-\tau) d\tau$$

Thomas Liu, BE280A, UCSD, Fall 2004

Imaging and Basis Functions

- 1. Most imaging methods may be considered to be the process of taking the inner product of an object with a set of basis functions, where the basis functions are determined by physics and engineering. In other words, the basis functions act as our "rulers" for measuring the object.
- 2. Fourier bases show up frequently because the world is full of harmonic oscillators, e.g. MRI.
- 3. The basis functions are not necessarily orthogonal.
- In fact, the "basis" functions usually do not even form a complete basis, so that the best we can do is approximate the original object given our measurements.

Fourier Series Expansion

Basis functions are the complex exponentials

$$b_m(t) = \frac{1}{\sqrt{T}} e^{j2\pi m f_0 t} = \frac{1}{\sqrt{T}} (\cos 2\pi m f_0 t + j \sin 2\pi m f_0 t)$$

where f_0 is the fundamental frequency and $T_0 = 1/f_0$ is the fundamental period.

Are they orthonormal? Yes, over an interval defined by the period T_0 .

$$\left\langle e^{j2\pi m f_0 t}, e^{j2\pi m f_0 t} \right\rangle = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} e^{j2\pi (m-n)f_0 t} dt = \delta[m-n]$$

Continuous - time series expansion is:

$$g(t) = \sum_{m=-\infty}^{\infty} c_m b_m(t) = \frac{1}{\sqrt{T}} \sum_{m=-\infty}^{\infty} c_m e^{j2\pi m f_0 t}$$

The basis coefficients are :

$$c_{m} = \left\langle \frac{1}{\sqrt{T}} e^{j2\pi n f_{0}t}, g(t) \right\rangle = \frac{1}{\sqrt{T}} \int_{-T_{0}/2}^{T_{0}/2} g(t) e^{-j2\pi n f_{0}t} dt$$

Thomas Liu, BE280A, UCSD, Fall 2004

Fourier Series Expansion

Note that we can write the Fourier Series Expansion in a more familiar form as...

$$g(t) = \frac{1}{\sqrt{T}} \sum_{m=-\infty}^{\infty} c_m e^{j2\pi m f_0 t}$$

= $\frac{1}{\sqrt{T}} \sum_{m=-\infty}^{\infty} c_m (\cos 2\pi m f_0 t + j \sin 2\pi m f_0 t)$
= $\frac{1}{\sqrt{T}} \left[c_0 + \sum_{m=1}^{\infty} (c_m + c_{-m}) \cos 2\pi m f_0 t + j (c_m - c_{-m}) \sin 2\pi m f_0 t \right]$
= $\frac{1}{\sqrt{T}} \left[c_0 + \sum_{m=1}^{\infty} a_m \cos 2\pi m f_0 t + b_m \sin 2\pi m f_0 t \right]$

The Fourier Transform Basis functions are complex exponentials $b_f(t) = e^{j2\pi ft}$ Are they orthonormal? $\langle e^{j2\pi f_1 t}, e^{j2\pi f_2 t} \rangle = \int_{-\infty}^{\infty} e^{j2\pi (f_2 - f_1)t} dt = \delta(f_2 - f_1)$ Continuous - time integral expansion is: $g(t) = \int_{-\infty}^{\infty} G(f)b_f(t)df = \int_{-\infty}^{\infty} G(f)e^{j2\pi ft}df$ The basis coefficients are: $G(f) = \langle e^{j2\pi ft}, g(t) \rangle = \int_{-\infty}^{\infty} g(t)e^{-j2\pi ft}dt$

Thomas Liu, BE280A, UCSD, Fall 2004

The Fourier Transform

The Fourier Transform (FT) is simply given by the basis coefficients

$$G(f) = \left\langle e^{j2\pi ft}, g(t) \right\rangle = \int_{-\infty}^{\infty} g(t) e^{-j2\pi ft} dt = F\left\{g(t)\right\}$$

The Inverse Fourier Transform is the continuous - time integral expansion for g(t):

$$g(t) = \int_{-\infty}^{\infty} G(f) b_f(t) df = \int_{-\infty}^{\infty} G(f) e^{j2\pi f t} df = F^{-1} \{ G(f) \}$$

This can also be written as an inner product in Fourier Space

$$g(t) = \left\langle e^{-j2\pi ft}, G(f) \right\rangle$$

UnitsTemporal Coordinates, e.g. t in seconds, f in cycles/second $G(f) = \langle e^{j2\pi ft}, g(t) \rangle = \int_{-\infty}^{\infty} g(t)e^{-j2\pi ft} dt$ Fourier Transform $g(t) = \langle e^{-j2\pi ft}, G(f) \rangle = \int_{-\infty}^{\infty} G(f)e^{j2\pi ft} df$ Inverse Fourier TransformSpatial Coordinates, e.g. x in cm, k_x is spatial frequency in cycles/cm $G(k_x) = \langle e^{j2\pi k_x x}, g(x) \rangle = \int_{-\infty}^{\infty} g(x)e^{-j2\pi k_x x} dx$ Fourier Transform $g(x) = \langle e^{-j2\pi k_x x}, G(k_x) \rangle = \int_{-\infty}^{\infty} G(k_x)e^{j2\pi k_x x} dk_x$ Inverse Fourier Transform

Computing Transforms $F(\delta(x)) = \int_{-\infty}^{\infty} \delta(x)e^{-j2\pi k_x x} dx = 1$ $F(\delta(x - x_0)) = \int_{-\infty}^{\infty} \delta(x - x_0)e^{-j2\pi k_x x} dx = e^{-j2\pi k_x x_0}$ $F(\Pi(x)) = \int_{-1/2}^{1/2} e^{-j2\pi k_x x} dx$ $= \frac{e^{-j\pi k_x} - e^{j\pi k_x}}{-j2\pi k_x}$ $= \frac{\sin(\pi k_x)}{\pi k_x} = \sin c(k_x)$ Thomas Liu, BE280A, UCSD, Fall 2004 Computing Transforms $f(1) = \int_{-\infty}^{\infty} e^{-j2\pi k_x x} dx = ???$ Define $h(k_x) = \int_{-\infty}^{\infty} e^{-j2\pi k_x x} dx$ and see what it does under an integral. $f(1) = \int_{-\infty}^{\infty} e^{-j2\pi k_x x} dx = \delta(k_x)$ Therefore, $F(1) = \int_{-\infty}^{\infty} e^{-j2\pi k_x x} dx = \delta(k_x)$

Linearity

The Fourier Transform is linear.

$$F\left\{ag(x)+bh(x)\right\}=aG(k_x)+bH(k_x)$$

Thomas Liu, BE280A, UCSD, Fall 2004

Duality

Note the similarity between these two transforms

$$F\left\{e^{j2\pi ax}\right\} = \delta(k_x - a)$$
$$F\left\{\delta(x - a)\right\} = e^{-j2\pi k_x a}$$

These are specific cases of duality

$$F\{G(x)\} = g(-k_x)$$

Shift Theorem

 $F\{g(x-a)\} = G(k_x)e^{-j2\pi ak_x}$

Shifting the function doesn't change its spectral content, so the magnitude of the transform is unchanged.

Each frequency component is shifted by *a*. This corresponds to a relative phase shift of

 $-2\pi a/(\text{spatial period}) = -2\pi a k_x$

For example, consider $\exp(j2\pi k_x x)$. Shifting this by *a* yields $\exp(j2\pi k_x(x-a)) = \exp(j2\pi k_x x)\exp(-j2\pi a k_x)$

Thomas Liu, BE280A, UCSD, Fall 2004

Eigenfunctions

The fundamental nature of the convolution theorem may be better understood by observing that the complex exponentials are eigenfunctions of the convolution operator.

$$e^{j2\pi k_x x} \longrightarrow g(x) \longrightarrow z(x)$$
$$z(x) = g(x) * e^{j2\pi k_x x}$$
$$= \int_{-\infty}^{\infty} g(u) e^{j2\pi k_x (x-u)} du$$
$$= G(k_x) e^{j2\pi k_x x}$$

The response of a linear shift invariant system to a complex exponential is simply the exponential multiplied by the FT of the system's impulse response.

Parseval's Theorem

Recall that an orthonormal expansion preserves length or equivalently energy.

$$\int_{-\infty}^{\infty} \left| g(x) \right|^2 dx = \int_{-\infty}^{\infty} \left| G(k_x) \right|^2 dk_x$$

The more general form of this theorem is

$$\int_{-\infty}^{\infty} g(x)h^*(x)dx = \int_{-\infty}^{\infty} G(k_x)H^*(k_x)dk_x$$

Parseval's Theorem Derivation

From the modulation theorem and the fact that $F\{h^*(x)\} = H^*(-k_x)$ we can write $F\{g(x)h^*(x)\} = G(k_x) * H^*(-k_x)$ $\int_{-\infty}^{\infty} g(x)h^*(x)e^{-j2\pi k_x x} dx = \int_{-\infty}^{\infty} G(k_x - u)H^*(-u)du$ Set $k_x = 0$ to obtain $\int_{-\infty}^{\infty} g(x)h^*(x)dx = \int_{-\infty}^{\infty} G(-u)H^*(-u)du$ which yields the general form of the Parseval's formula $\int_{-\infty}^{\infty} g(x)h^*(x)dx = \int_{-\infty}^{\infty} G(k_x)H^*(k_x)dk_x$ Setting h(x) = g(x) then yields the more familiar form $\int_{-\infty}^{\infty} |g(x)|^2 dx = \int_{-\infty}^{\infty} |G(k_x)|^2 dk_x$