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What is a signal?

Discrete-time/space signal: continuous valued
function with a discrete time/space index, denoted as
s[n].

Continuous-time/space signal: continuous valued
function with a continuous time/space index, denoted
as s(t) or s(x).

n

t
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Signal Representation
It’s easiest to start with discrete-time signals, which can be
represented as vectors of either finite or infinite dimension. We’ll
start with finite dimensional vectors since they are easier to think
about.  Consider a finite-time signal with just 3 points. This can
represented as a vector in ℜ3 for real-valued signals or C3 for
complex-valued signals.
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In signal notation :   s[n] =1,1,1

In vector notation :  s =

1
1
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Basis Vectors
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The numbers that we use to represent a signal depend on the
choice of basis vectors, or more generally,  basis functions.
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Here the unit vectors are used as the
basis vectors.  Note these are just
Kronecker Delta functions! 
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Basis Vectors
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With this set of basis vectors, the coefficients
of the signal are s[n] = 2,0,1

Any 3 vectors that span 3-dimensional space may be used as
basis vectors.  Recall from linear algebra, that these 3 vectors
must be linearly independent. In other words, any one basis
vector cannot be expressed as a linear sum of the other basis
vectors.  For any basis set, the signal coefficients are simply
the weights of the basis vectors.
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Inner Products

€ 

r,s =

r∗[n]s[n]
n=1

N

∑ for finite - dimensional vectors

r∗[n]s[n]
n=−∞

∞

∑ for infinite - dimensional vectors

r∗(t)s(t)dt
t=−∞

∞

∫ for continuous signals

 

 

 
 
 

 

 
 
 

The norm is defined as 

s = s,s
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Orthogonality

€ 

Some other notations for the inner product :
       x,y = x • y = xTy
Also, recall that the angle between the two vectors is given by

       cosθ = x,y
x y

This gives rise to the famous Cauchy - Schwarz Inequality
        x,y ≤ x y

Two vectors are orthogonal if x,y = 0,  and therefore θ = π/2.
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Orthonormal basis

€ 

A set of vectors S = bi{ } forms an orthonormal basis, if 

bi,b j = 0 for i ≠ j,  every basis vector is normalized to have unit

length bi =1, and any vector y in the space can be expressed

as a linear combination of the basis vectors, i.e. y = ck
k
∑ bk .
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Finding Expansion Coefficients

  

€ 

Define the basis matrix as  B = b1 b2 L bN[ ].

Then any vector y = Bc = b1 b2 L bN[ ]

c1

c2

M

cN

 

 

 
 
 
 

 

 

 
 
 
 

Multiply both sides of the equation by B−1,  to obtain c = B−1y.
Because the basis vectors are orthonormal BTB = I,  and
therefore  B−1 = BT . So, we can also write  c = BTy.
By definition, B is an orthonormal or unitary matrix. 
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Expansion Coefficients

  

€ 

c = BTy =

b1T

b2T

M

bNT
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b1,y
b2,y
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bN ,y

 

 

 
 
 
 

 

 

 
 
 
 

For any vector y, the ith expansion coefficient is  the inner
product of the ith orthonormal basis vector with y.
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Parseval’s Theorem

€ 

c 2
= c,c = cTc = yTBBTy = yTy = y 2

Exercise :  Verify that BBT = I for an orthonormal basis set. This is 
referred to as the resolution of unity or resolution of identity. 

An orthonormal expansion preserves length.
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Examples

€ 

B =

1 0 0
0 1 0
0 0 1
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Examples

€ 

B =
1
2

1 −1 −1 −1
1 1 −1 1
1 1 1 −1
1 −1 1 1

 

 

 
 
 
 

 

 

 
 
 
 

Is this an orthonormal set of basis functions?
What familiar set of functions do they correspond to? 
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Examples

€ 

y[n] =
2

2
cos(π (2n − 3) /4) for n = 0,1,2,3

       =   -1/2,1/2,1/2,-1/2

c = BTy =
1
2

1 1 1 1
−1 1 1 −1
−1 −1 1 1
−1 1 −1 1
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Fourier Basis

€ 

xm[n] = 1
2

exp(-j2πmn /4) for n = 0,1,2,3
       

B =
1
2

1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

 

 

 
 
 
 

 

 

 
 
 
 

As an exercise, verify that BHB = I,  where H denotes a Hermitian
tranpose - - i.e. conjugate every term and take the tranpose.
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Recap - Finite Dimensional Case

€ 

Matrix Notation
y = Bc  where c = BTy

Signal notation

y[n] = cii=1

N
∑ bi n[ ] = y[n],bi[n]

i=1

N
∑ bi n[ ]
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Infinite Dimensional Expansions

€ 

 y[n] = cii=−∞

∞

∑ bi n[ ] ci = bi[n],y[n]

Discrete-Time Series Expansion

€ 

 y(t) = cii=−∞

∞

∑ bi(t) ci = bi(t),y(t)

Continuous-Time Series Expansion

€ 

 y(t) = c f-∞

∞

∫ bf (t)df c f = bf (t),y(t)

Continuous-Time Integral Expansion
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Expansions with Delta Functions

€ 

 y[n] = ckk=−∞

∞

∑ δ k − n[ ] where ck = δ k − n[ ],y[n] = y[k]

= y[k]
k=−∞

∞

∑ δ k − n[ ]

Discrete-Time Series Expansion

€ 

y(t) = cτδ(t − τ )dτ
−∞

∞

∫ where cτ = y(τ)δ(t − τ)dτ
−∞

∞

∫ = y(t)

= y(τ )δ(t − τ )dτ
−∞

∞

∫

Continuous-Time Integral Expansion
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Imaging and Basis Functions
1. Most imaging methods may be considered to be the

process of taking the inner product of an object with a
set of basis functions, where the basis functions are
determined by physics and engineering. In other words,
the basis functions act as our “rulers”  for measuring
the object.

2. Fourier bases show up frequently because the world is
full of harmonic oscillators, e.g. MRI.

3. The basis functions are not necessarily orthogonal.
4. In fact, the “basis” functions usually do not even form

a complete basis, so that the best we can do is
approximate the original object given our
measurements.
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Fourier Series Expansion

€ 

Basis functions are the complex exponentials 

bm t( ) =
1
T
e j2πmf0t =

1
T

cos2πmf0t + j sin2πmf0t( )

where  f0 is the fundamental frequency and T0 =1/ f0 is the fundamental
period. 
Are they orthonormal? Yes, over an interval defined by the period T0 .

e j 2πmf0t ,e j2πnf0t =
1
T0

e j2π m−n( ) f0t
−T0 / 2

T0 / 2
∫ dt = δ[m − n]

Continuous - time series expansion is :  

      g(t) = cmbm (t)
m=−∞

∞

∑ =
1
T

cm
m=−∞

∞

∑ e j2πmf0t

The basis coefficients are :

    cm =
1
T
e j 2πmf0t ,g(t) =

1
T

g(t)e− j 2πmf0t
−T0 / 2

T0 / 2
∫ dt
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Fourier Series Expansion

€ 

    g(t) =
1
T

cm
m=−∞

∞

∑ e j 2πmf0t

=
1
T

cm
m=−∞

∞

∑ (cos2πmf0t + j sin2πmf0t)

=
1
T
c0 + cm + c−m( )cos2πmf0t + j cm − c−m( )sin2πmf0t

m=1

∞

∑
 

 
 

 

 
 

=
1
T
c0 + am cos2πmf0t + bm sin2πmf0t

m=1

∞

∑
 

 
 

 

 
 

Note that we can write the Fourier Series Expansion in a
more familiar form as…
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The Fourier Transform

€ 

Basis functions are complex exponentials bf t( ) = e j2πft

Are they orthonormal? 

e j 2πf1t ,e j 2πf2t = e j2π f2− f1( ) t
−∞

∞

∫ dt = δ( f2 − f1)

Continuous - time integral expansion is :  

      g(t) = G( f )bf (t)−∞

∞

∫ df = G( f )e j2πft
−∞

∞

∫ df

The basis coefficients are :

    G( f ) = e j2πft ,g(t) = g(t)e− j 2πft
−∞

∞

∫ dt
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The Fourier Transform

€ 

The Fourier Transform (FT) is simply given by the basis coefficients

              G( f ) = e j2πft ,g(t) = g(t)e− j 2πft
−∞

∞

∫ dt = F g(t){ }

The Inverse Fourier Transform is the continuous- time integral 
expansion for g(t) :  

             g(t) = G( f )bf (t)−∞

∞

∫ df = G( f )e j2πft
−∞

∞

∫ df = F −1 G( f ){ }

This can also be written as an inner product in Fourier Space
             g(t) = e− j 2πft ,G( f )
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Units

€ 

G( f ) = e j2πft ,g(t) = g(t)e− j 2πft
−∞

∞

∫ dt           Fourier Transform

g(t) = e− j 2πft ,G( f ) = G( f )e j 2πft
−∞

∞

∫ df      Inverse Fourier Transform

Spatial Coordinates, e.g. x in cm, kx  is spatial frequency  in cycles/cm

Temporal Coordinates, e.g. t in seconds, f in cycles/second

€ 

G(kx ) = e j2πkxx,g(x) = g(x)e− j2πkxx
−∞

∞

∫ dx           Fourier Transform

g(x) = e− j 2πkxx,G(kx ) = G(kx )e
j 2πkxx

−∞

∞

∫ dkx      Inverse Fourier Transform

Thomas Liu, BE280A, UCSD, Fall 2004

Computing Transforms

€ 

F(δ(x)) = δ(x)e− j2πkxx
−∞

∞

∫ dx =1

F(δ(x − x0)) = δ(x − x0)e
− j2πkxx

−∞

∞

∫ dx = e− j2πkxx0

€ 

F Π x( )( ) = e− j 2πkxx
−1/ 2

1/ 2
∫ dx

=
e− jπkx − e jπkx

− j2πkx

=
sin(πkx )
πkx

= sinc(kx )
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Computing Transforms

€ 

F(1) = e− j2πkxx
−∞

∞

∫ dx = ???

€ 

G kx( )
−∞

∞

∫ h kx( )dkx = G kx( )
−∞

∞

∫ e− j 2πkxx
−∞

∞

∫ dxdkx

= G kx( )e− j 2πkxx
−∞

∞

∫ dkxdx−∞

∞

∫
= g(−x)dx

−∞

∞

∫
=G(0)

€ 

Define h kx( ) = e− j2πkxx
−∞

∞

∫ dx and see what it does under an integral.

€ 

Therefore, F(1) = e− j2πkxx
−∞

∞

∫ dx = δ(kx )
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Computing Transforms

€ 

F e j 2πk0x{ } = δ(kx − k0)

F cos2πk0x{ } =
1
2
δ(kx − k0) + δ(kx + k0)( )

F sin2πk0x{ } =
1
2 j

δ(kx − k0) −δ(kx + k0)( )

Similarly, 
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Linearity

€ 

F ag(x) + bh(x){ } = aG(kx ) + bH(kx )

The Fourier Transform is linear. 

Thomas Liu, BE280A, UCSD, Fall 2004

Duality

€ 

F e j2πax{ } = δ(kx − a)
F δ(x − a){ } = e− j 2πkxa

€ 

F G(x){ } = g(−kx )

Note the similarity between these two transforms

These are specific cases of duality
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Application of Duality

€ 

F sinc(x){ } =
sinπx
πx

e− j 2πkxxdx = ??
−∞

∞

∫

€ 

Recall that  F Π(x){ } = sinc kx( ).
Therefore from duality, F sinc x( ){ } =Π(−kx ) =Π(kx )
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Scaling Theorem

€ 

F g(ax){ } =
1
a
G kx

a
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Shift Theorem

€ 

F g(x − a){ } =G kx( )e− j2πakx

€ 

Shifting the function doesn't change its spectral content, so
the magnitude of the transform is unchanged.
Each frequency component is shifted by a. This corresponds
to a relative phase shift of
      - 2πa /(spatial period) =  - 2πakx
For example, consider exp( j2πkxx).  Shifting this by a yields
exp( j2πkx (x − a)) = exp( j2πkxx)exp(− j2πakx )
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Hermitian Symmetry

€ 

F g∗(x){ } = g∗(x)e− j 2πkxx
−∞

∞

∫ dx

              = g(x)e j 2πkxx
−∞

∞

∫ dx[ ]
*

              =G∗(−kx )

If g(x) is real, then g(x) = g∗(x),  and therefore G(kx ) =G∗(−kx ).
G(kx ) is said to exhibit Hermitian Symmetry. The real
part of G(kx ) is symmetric, while the imaginary part is
anti - symmetric. 

Real
Imaginary
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Convolution/Modulation Theorem

€ 

F g(x)∗ h(x){ } = g(u)∗ h(x − u)du
−∞

∞

∫[ ]e− j 2πkxx−∞

∞

∫ dx

= g(u) h(x − u)
−∞

∞

∫ e− j2πkxx
−∞

∞

∫ dxdu

= g(u)H(kx )e
− j2πkxu

−∞

∞

∫ du

=G(kx )H(kx )

Convolution in the spatial domain transforms into
multiplication in the frequency domain.  Dual is
modulation

€ 

F g(x)h(x){ } =G kx( )∗H(kx )
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Eigenfunctions

€ 

z(x) = g(x)∗e j2πkxx

= g(u)
−∞

∞

∫ e j2πkx (x−u)du

=G(kx )e
j2πkxx

The fundamental nature of the convolution theorem may be
better understood by observing that the complex exponentials
are eigenfunctions of the convolution operator.

g(x)                     z(x)

€ 

e j2πkxx

The response of a linear shift invariant system to a complex
exponential is simply the exponential multiplied by the FT of
the system’s impulse response.



19

Thomas Liu, BE280A, UCSD, Fall 2004

Eigenfunctions

€ 

h(x) = H(kx−∞

∞

∫ )e j 2πkxxdkx

Now consider an arbitrary input h(x).

h(x)                     g(x)                     z(x)

Recall that we can express h(x)  as the integral of weighted
complex exponentials.

Each of these exponentials is weighted by G(kx) so that the
response may be written as

€ 

z(x) = G(kx )H(kx−∞

∞

∫ )e j2πkxxdkx
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Application of Convolution Thm.

€ 

Λ(x) =
1− x x <1
0 otherwise

 
 
 

F(Λ(x)) = 1− x( )
−1

1
∫ e− j2πkxxdx = ??

-1                     1 
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Application of Convolution Thm.

€ 

Λ(x) =Π(x)∗Π(x)
F(Λ(x)) = sinc 2 kx( )

-1                     1 

*=
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Modulation

€ 

F g(x)e j 2πk0x[ ] =G(kx )∗δ(kx − k0) =G kx − k0( )

F g(x)cos 2πk0x( )[ ] =
1
2
G kx − k0( ) +

1
2
G kx + k0( )

F g(x)sin 2πk0x( )[ ] =
1
2 j
G kx − k0( ) − 12 j

G kx + k0( )
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Example
Amplitude Modulation (e.g. AM Radio)

g(t)

2cos(2πf0t)

2g(t) cos(2πf0t)

G(f)

-f0 f0

G(f-f0)+ G(f+f0)
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Parseval’s Theorem
Recall that an orthonormal expansion preserves length or
equivalently energy.

€ 

g(x) 2dx
−∞

∞

∫ = G(kx )
2dkx−∞

∞

∫

The more general form of this theorem is

€ 

 g(x)h∗(x)dx
−∞

∞

∫ = G(kx )H
*

−∞

∞

∫ (kx )dkx
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Parseval’s Theorem Derivation

€ 

From the modulation theorem and the fact that F h∗(x){ } = H*(−kx )

we can write  F g(x)h∗(x){ } =G kx( )∗H*(−kx ) 

        g(x)h∗(x)e− j2πkxxdx
−∞

∞

∫ = G(kx − u)H*
−∞

∞

∫ (−u)du

Set kx = 0 to obtain 

      g(x)h∗(x)dx
−∞

∞

∫ = G(−u)H*
−∞

∞

∫ (−u)du

which yields the general form of the Parseval's formula

      g(x)h∗(x)dx
−∞

∞

∫ = G(kx )H
*

−∞

∞

∫ (kx )dkx
Setting h(x) = g(x) then yields the more familiar form 

            g(x) 2dx
−∞

∞

∫ = G(kx )
2dkx−∞

∞

∫


