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Bioengineering 280A
Principles of Biomedical Imaging

Fall Quarter 2006
X-Rays Lecture 2
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Topics

• Review topics from last lecture
• Attenuation
• Contrast
• Noise
• Image Equation
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X-Ray Production

Prince and Links 2005

Collisional transfers

Radiative transfers
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X-Ray Spectrum

Prince and Links 2005

Lower
energy
photons are
absorbed  by
anode, tube,
and other
filters
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Interaction with Matter

Photoelectric effect
dominates at low x-ray
energies and high atomic
numbers.

Typical energy range for diagnostic x-rays is below 200
keV.
The two most important types of interaction are photoeletric
absorption and Compton scattering.

Compton scattering
dominates at high x-ray
energies and low atomic
numbers, not much contrast

http://www.eee.ntu.ac.uk/research/vision/asobania
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X-Ray Imaging Chain

Suetens 2002

Reduces effects of Compton scattering
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Attenuation

5

10 50 100 150

1

0.1

Attenuation
Coefficient

500

Bone
Muscle
Fat

Adapted from www.cis.rit.edu/class/simg215/xrays.ppt 
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Intensity

! 

I = E"

Energy Photon flux rate

! 

" =
N

A#t

Unit TimeUnit Area

Number of photons
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Intensity
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Attenuation

! 

n = µN"x  photons lost per unit length

µ =
n /N

"x
   fraction of photons lost per unit length

! 

"N = #n

! 

dN

dx
= "µN

! 

N(x) = N
0
e
"µx

! 

I("x) = I
0
e
#µ"x

For mono-energetic case, intensity is
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Attenuation

! 

dN

dx
= "µ(x)N

! 

N(x) = N0 exp " µ # x ( )
0

x

$ d # x ( )

Inhomogeneous Slab

! 

I(x) = I0 exp " µ # x ( )
0

x

$ d # x ( )

Attenuation depends on energy, so also need to integrate
over energies

! 

I(x) = S0 " E ( ) " E 
0

#

$ exp % µ " x ; " E ( )
0

x

$ d " x ( )d " E 
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Contrast

Bushberg et al 2001
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Contrast
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! 

A = N0 exp("µx)

B = N0 exp("µ(x + z))

C
S

=
B " A

A

=
N0 exp("µ(x + z))" N0 exp("µx)

N0 exp("µx)

= exp("µz) "1

Subject/Local
Contrast

Bushberg et al 2001
Background intensity

Object intensity
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Noise and Image Quality

Prince and Links 2005

Bushberg et al 2001
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What is Noise?
Fluctuations in either the imaging system or the object
being imaged.

Quantization Noise: Due to conversion from analog
waveform  to digital number.

Quantum Noise: Random fluctuation in the number of
photons emitted and recorded.

Thermal Noise:   Random fluctuations present in all
electronic systems.  Also,  sample noise in MRI

Other types: flicker, burst, avalanche  - observed in
semiconductor devices.

Structured Noise: physiological sources, interference

TT Liu, BE280A, UCSD Fall 2006

Histograms and Distributions

3rd grade heights 6th grade heights
Bushberg et al 2001
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Gaussian Distribution

1, 2, and 3 standard deviation intervals correspond to 68%,
95%, and 99% of the observations

Bushberg et al 2001
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Poisson Process
Events occur at random instants of time at an average rate

of λ events per second.

Examples: arrival of customers to an ATM, emission of
photons from an x-ray source, lightning strikes in a
thunderstorm.

Assumptions:

1) Probability of more than 1 event in an small time
interval is small.

2) Probability of event occurring in a given small time
interval is independent of another event occuring in
other small time intervals.
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Poisson Process

! 

P N(t) = k[ ] =
"t( )

k

k!
exp(#"t)

" =  Average rate of events per second
"t =  Average number of events at time t
"t =  Variance in number of events

Probability of interarrival times
P T > t[ ] = e# "t

TT Liu, BE280A, UCSD Fall 2006

Example

! 

A service center receives an average of 15 inquiries
per minute. Find the probability that 3 inquiries arrive
in the first 10 seconds. 

" =15 /60 = 0.25
"t = 0.25(10) = 2.5

P[N(t =10) = 3) =
(2.5)

3

3!
exp(#2.5) = .2138
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Quantum Noise
Fluctuation in the number of photons emitted by the x-ray
source and recorded by the detector.

! 

P
k

=
N

0

k
exp("N

0
)

k!

P
k

:  Probability of emitting k photons in a given time
       interval.

N
0

:  Average number of photons emitted in that
        time interval =  #t
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Transmitted Photons

! 

Qk =
tN0( )

k
exp("tN0)

k!

Qk :  Probability of k photons making it through object  

N0 :  Average number of photons emitted in that

        time interval =  #t

t = exp(" µdz) =  fraction of photons transmitted$
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Mean and Variance

! 

For a Poisson process, the mean =  variance, i.e. X =" 2

Therefore, the standard deviation is given by  " = X 

For X - ray systems, if the mean number of counts is N, then the

standard deviation in the number of counts is  " = N.

TT Liu, BE280A, UCSD Fall 2006
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! 

Poisson Distribution describes x - ray counting statistics.

Gaussian distribution is good approximation to Poisson when " = X 

Bushberg et al 2001

TT Liu, BE280A, UCSD Fall 2006

110
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Contrast and SNR for X-Rays

! 

Contrast = C =
I
t
" I

b

I
b

                 SNR =
I
t
" I
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! 

SNR =
CI

b

"
b

= C N
b

= C #ARt$

Photons/Roentegen/cm2

Area Exposure in
Roentgens

Detector
efficiency

Fraction
transmitted
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Example

! 

" = 637 #106   photons R-1
cm

$2

R = 50 mR

t =  0.05

% =  0.25

A =  1mm2

C = 0.1   (10% contrast)

SNR =  0.1 6.37 #108 & .05 & .25 & .01 = 6.3

20log10 6.3( ) =16 dB
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! 

C =
I
t
" I

b

I
b

=
N0 exp " µ1(L "W ) + µ2W( )( ) " exp("µ1L)( )

N0 exp("µ1L)

SNR = C N0Aexp("µ1L)

µ1

µ2

L

W
Area A
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Magnification of Object

! 

M(z) =
d

z

=
Source to Image Distance (SID)

Source to Object Distance (SOD)

Bushberg et al 2001

zd
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Magnification of Object

Bushberg et al 2001

M = 1:  I(x,y) = t(x,y)

M = 2:  I(x,y) = t(x/2,y/2)

In general, I(x,y) = t(x/M(z),y/M(z))

t(x,y) I(x,y)

I(x,y)
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Source magnification

! 

m(z) = "
d " z

z
= "

B

A

=1"M(z)

Bushberg et al 2001

d
=z
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Image of a point object

! 

Id (x,y) = lim
m"0

ks(x /m,y /m)

= #(x,y)

s(x,y)

s(x,y)

! 

Id (x,y) = ks(x,y)

m=1

! 

Id (x,y) = ks(x /m,y /m)In general, 
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Image of arbitrary object

! 

lim
m"0

Id (x,y) = t(x,y)

s(x,y)

s(x,y)

! 

Id (x,y) = ???

m=1

! 

Id (x,y) = ks(x /m,y /m) **t(x /M,y /M) 

t(x,y)

t(x,y)
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Convolution
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Film-screen blurring

http://learntech.uwe.ac.uk/radiography/RScience/imaging_principles_d/diagimage11.htm
http://www.sunnybrook.utoronto.ca:8080/~selenium/xray.html#Film

! 

Id (x,y) = ks(x /m,y /m) **t(x /M,y /M) **h(x,y)


