Bioengineering 280A Principles of Biomedical Imaging

> Fall Quarter 2009 MRI Lecture 2

TT Liu, BE280A, UCSD Fall 2009

Longitudinal Relaxation

$$\frac{d\mathbf{M}_z}{dt} = -\frac{M_z - M_z}{T_1}$$

Out of the control of

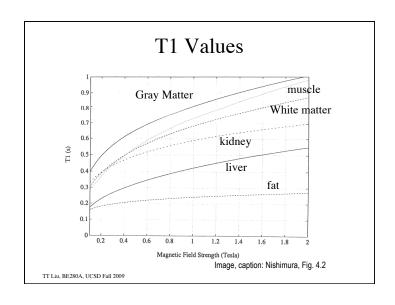
After a 90 degree pulse

 $M_z(t) = M_0(1 - e^{-t/T_1})$

Due to exchange of energy between nuclei and the lattice (thermal vibrations). Process continues until thermal equilibrium as determined by Boltzmann statistics is obtained.

The energy ΔE required for transitions between down to up spins, increases with field strength, so that T_1 increases with **B**.

TT Liu, BE280A, UCSD Fall 2009


Relaxation

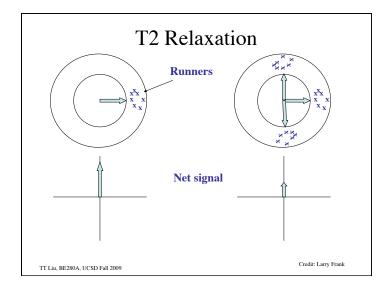
An excitation pulse rotates the magnetization vector away from its equilibrium state (purely longitudinal). The resulting vector has both longitudinal $\mathbf{M_z}$ and tranverse $\mathbf{M_{xy}}$ components.

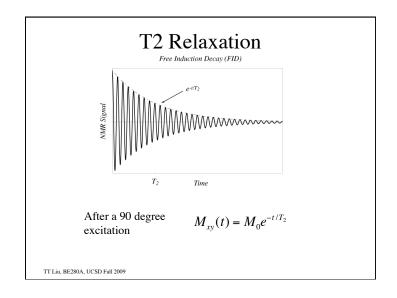
Due to thermal interactions, the magnetization will return to its equilibrium state with characteristic time constants.

 T_1 spin-lattice time constant, return to equilibrium of M_z

 T_2 spin-spin time constant, return to equilibrium of M_{xy}

Transverse Relaxation


$$\frac{d\mathbf{M}_{xy}}{dt} = -\frac{M_{xy}}{T_2}$$


$$\mathbf{x} = -\frac{\mathbf{M}_{xy}}{\mathbf{y}} \times \mathbf{y}$$

Each spin's local field is affected by the z-component of the field due to other spins. Thus, the Larmor frequency of each spin will be slightly different. This leads to a dephasing of the transverse magnetization, which is characterized by an exponential decay.

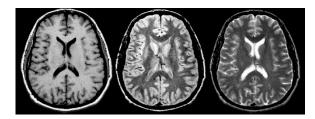
 T_2 is largely independent of field. T_2 is short for low frequency fluctuations, such as those associated with slowly tumbling macromolecules.

TT Liu, BE280A, UCSD Fall 2009

T2 Values

Tissue	T ₂ (ms)
gray matter	100
white matter	92
muscle	47
fat	85
kidney	58
liver	43
CSF	4000

III oble 4.2 or


Table: adapted from Nishimura, Table 4.2

TT Liu, BE280A, UCSD Fall 2009

Solids exhibit very short T_2 relaxation times because there are many low frequency interactions between the immobile spins.

On the other hand, liquids show relatively long T_2 values, because the spins are highly mobile and net fields average out.

Example

T₁-weighted

Density-weighted

T₂-weighted

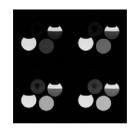
Questions: How can one achieve T2 weighting? What are the relative T2's of the various tissues?

TT Liu, BE280A, UCSD Fall 2009

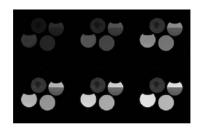
Bloch Equation

$$\frac{d\mathbf{M}}{dt} = \mathbf{M} \times \gamma \mathbf{B} - \frac{M_x \mathbf{i} + M_y \mathbf{j}}{T_2} - \frac{(M_z - M_0) \mathbf{k}}{T_1}$$
Precession

Transverse Relaxation


Relaxation

Longitudinal Relaxation


i, j, k are unit vectors in the x,y,z directions.

TT Liu, BE280A, UCSD Fall 2009

Example

(a) Four images, all obtained with a common TR=5 seconds and TE=90, 50, 20, 15 ms (shown in reading order).

(b) Six images obtained with a common TE=15 ms and TR=500, 1000, 2000, 3000, 4000, 5000 ms (shown in reading order).

Figure 8: Phantom data which illustrates signal intensity and contrast for bottles filled with jello af varying consistency. Where is T_1 long/short? How long, how short? The same for T_2 ? Which bottles might be pure water? Which jello is most firm? What pictures are the most T_1 -, T_2 - and PD-weighted?

TT Liu, BE280A, UCSD Fall 2009

Hanson 2009

Free precession about static field

$$\begin{aligned} \frac{d\mathbf{M}}{dt} &= \mathbf{M} \times \gamma \mathbf{B} \\ &= \gamma \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ M_x & M_y & M_z \\ B_x & B_y & B_z \end{vmatrix} \\ &= \gamma \begin{pmatrix} \hat{i} \left(B_z M_y - B_y M_z \right) \\ -\hat{j} \left(B_z M_x - B_x M_z \right) \\ \hat{k} \left(B_y M_x - B_x M_y \right) \end{pmatrix} \end{aligned}$$

Free precession about static field

$$\begin{bmatrix} dM_{x}/dt \\ dM_{y}/dt \\ dM_{z}/dt \end{bmatrix} = \gamma \begin{bmatrix} B_{z}M_{y} - B_{y}M_{z} \\ B_{x}M_{z} - B_{z}M_{x} \\ B_{y}M_{x} - B_{x}M_{y} \end{bmatrix}$$
$$= \gamma \begin{bmatrix} 0 & B_{z} & -B_{y} \\ -B_{z} & 0 & B_{x} \\ B_{y} & -B_{x} & 0 \end{bmatrix} \begin{bmatrix} M_{x} \\ M_{y} \\ M_{z} \end{bmatrix}$$

TT Liu, BE280A, UCSD Fall 2009

Matrix Form with B=B₀

$$\begin{bmatrix} dM_x/dt \\ dM_y/dt \\ dM_z/dt \end{bmatrix} = \begin{bmatrix} -1/T_2 & \gamma B_0 & 0 \\ -\gamma B_0 & 1/T_2 & 0 \\ 0 & 0 & -1/T_1 \end{bmatrix} \begin{bmatrix} M_x \\ M_y \\ M_z \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ M_0/T_1 \end{bmatrix}$$

TT Liu, BE280A, UCSD Fall 2009

Precession

$$\begin{bmatrix} dM_x/dt \\ dM_y/dt \\ dM_z/dt \end{bmatrix} = \gamma \begin{bmatrix} 0 & B_0 & 0 \\ -B_0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} M_x \\ M_y \\ M_z \end{bmatrix}$$

Useful to define $M = M_x + jM_y$

$$dM/dt = d/dt (M_x + iM_y)$$
$$= -j\gamma B_0 M$$

Solution is a time-varying phasor

$$M(t) = M(0)e^{-j\gamma B_0 t} = M(0)e^{-j\omega_0 t}$$

TT Liu, BE280A, UCSD Fall 2009

Question: which way does this rotate with time?

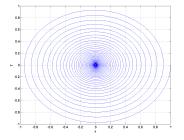
Z-component solution

$$M_z(t) = M_0 + (M_z(0) - M_0)e^{-t/T_1}$$

Saturation Recovery

If
$$M_z(0) = 0$$
 then $M_z(t) = M_0(1 - e^{-t/T_1})$

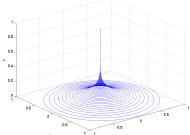
Inversion Recovery


If
$$M_z(0) = -M_0$$
 then $M_z(t) = M_0(1 - 2e^{-t/T_1})$

Transverse Component

$$M \equiv M_x + jM_y$$

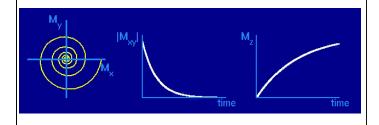
$$dM/dt = d/dt(M_x + iM_y)$$
$$= -j(\omega_0 + 1/T_2)M$$


$$M(t) = M(0)e^{-j\omega_0 t}e^{-t/T_2}$$

TT Liu, BE280A, UCSD Fall 2009

Summary

- 1) Longitudinal component recovers exponentially.
- 2) Transverse component precesses and decays exponentially.

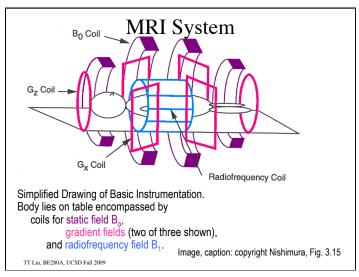


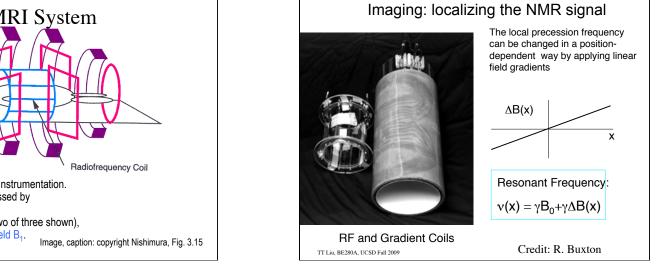
Fact: Can show that $T_2 < T_1$ in order for $|M(t)| \le M_0$ Physically, the mechanisms that give rise to T_1 relaxation also contribute to transverse T_2 relaxation.

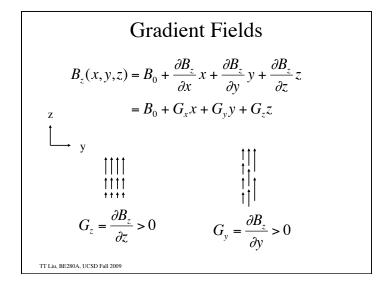
TT Liu, BE280A, UCSD Fall 2009

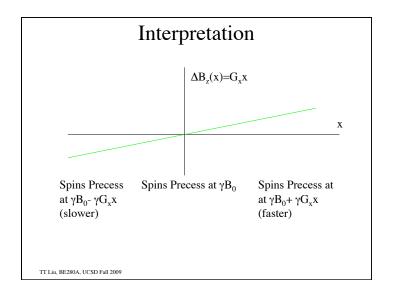
Summary

- 1) Longitudinal component recovers exponentially.
- 2) Transverse component precesses and decays exponentially.


Source: http://mrsrl.stanford.edu/~brian/mri-movies/


TT Liu, BE280A, UCSD Fall 2009

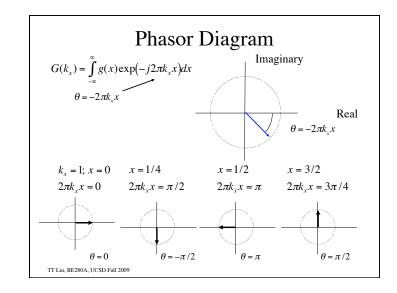

Gradients

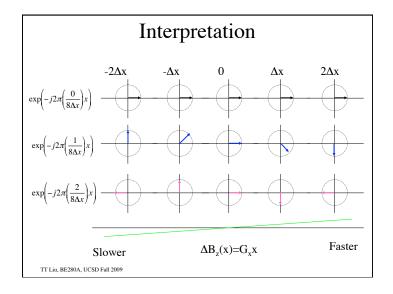

Spins precess at the Larmor frequency, which is proportional to the local magnetic field. In a constant magnetic field $B_z=B_0$, all the spins precess at the same frequency (ignoring chemical shift).

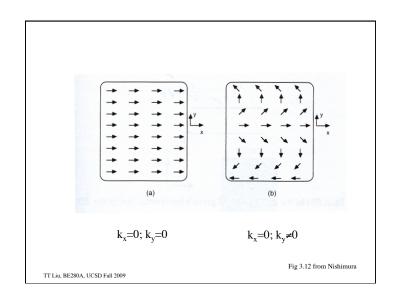
Gradient coils are used to add a spatial variation to B_z such that $B_z(x,y,z)=B_0+\Delta\ B_z(x,y,z)$. Thus, spins at different physical locations will precess at different frequencies.

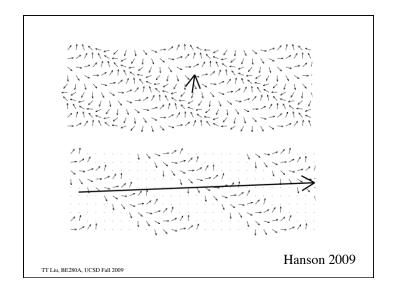
Rotating Frame of Reference

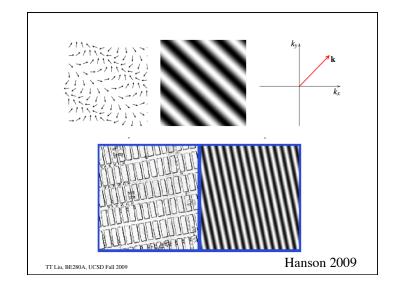
Reference everything to the magnetic field at isocenter.


TT Liu, BE280A, UCSD Fall 2009


Imaginary $e^{i\theta} = \cos\theta + j\sin\theta$ Phasors $\cos\theta$ Real $\theta = -\pi/2$ $\theta = \pi$ $\theta = \pi/2$


Spins




There is nothing that nuclear spins will not do for you, as long as you treat them as human beings.
Erwin Hahn

