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Gradient Fields
Define
GEGX2+Gy}'+GZIQ ?sxf+y}'+zl€
So that

Gxx+ny+Gzz=é-?

Also, let the gradient fields be a function of time. Then
the z-directed magnetic field at each point in the
volume is given by :

B.(F,0)= B, + G(1)- F
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Static Gradient Fields

In a uniform magnetic field, the transverse magnetization
is given by: )
M(t)= M(0)e ™' e™"'"

In the presence of non time-varying gradients we have

M(F) - M(Ko)e—jyt?:(?)re-z/m;)
_ M(;."O)e—jV(Bn’fé';)fe—t/Tz(F)
= M(F,0)e e 197 B
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Time-Varying Gradient Fields

In the presence of time-varying gradients the frequency
as a function of space and time is:

w(F,t) = yB.(F.1)
=yB, + yé(t) °F
=, + Aw(r,1)
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Phase

Phase = angle of the magnetization phasor
Frequency = rate of change of angle (e.g. radians/sec)
Phase = time integral of frequency

@(7.1) = —fotw(?,r)dr
=-w,t + Ag(7,1)

Where the incremental phase due to the gradients is

Ag(7.1)= - [;A0(F,v)dT
o RGGRIN
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Phase with constant gradient

/ ~
Ag(F.1) = —fﬂ" Aw(F,7)dt Ag(F.1,) = —foi Aw(r,T)dT

Ag(F.1,)= _fO’zAw(F,r)dt
=-Aw(F)t,
if Aw is non - time varying.
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Time-Varying Gradient Fields

The transverse magnetization is then given by

M(F,t) = M(7,0)e” """

= M0)e ™0 exp| - [ Ao 1)d|

= M(F,0)e”" "Dt exp(—jyfté(r)- Fdr)
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Signal Equation

Signal from a volume
&M=LM@MV

= fX f‘f M(x,y,z,00e e eXP(—j}’f(:G(T)' ?d‘r)dxdydz

For now, consider signal from a slice along z and drop
the T, term. Define ()= fZ“AZ/zM(?,t)dz

20-Az/2

To obtain
s, (1) = fJ;m(x,y)e'j”“’ exp(—jyf{jé(r) Fdr)dxdy
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Signal Equation

Demodulate the signal to obtain
s(t)y=e’™'s, (1)
= f f \‘m(x,y)eXp(—jV f (:6(1')~ 7dr)dxdy
= fxLm(x,}‘)exp(—j)/ﬂ[Gx(r)x+ G).(T)y]dr)dxdy

= [ [ mCeyyexp(=j2a(k (0x-+ k (1)) dxdy

Where
'J/ t
k(= [.6.(0dr

'y t
k(1) = o ) G, (ndr
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MR signal is Fourier Transform

s = [ [ mCx.yyexp(=j2a(k,(0)x + k(1)) dxdy
= M(k,(1),k, (1))
= F[m(x.y)]

k (1), (1)

TT Liu, BE280A, UCSD Fall 2009

Recap

¢ Frequency = rate of change of phase.

¢ Higher magnetic field -> higher Larmor frequency ->
phase changes more rapidly with time.

* With a constant gradient G,, spins at different x locations
precess at different frequencies -> spins at greater x-values
change phase more rapidly.

¢ With a constant gradient, distribution of phases across x
locations changes with time. (phase modulation)

* More rapid change of phase with x -> higher spatial
frequency k,
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K-space

At each point in time, the received signal is the Fourier
transform of the object
s(t) = M(k,(1),k,(1)) = F[m(x,y)]

ki (1).ky (1)
evaluated at the spatial frequencies:
'J/ t
k(0= [,6.(ax
'J/ t
k0= [,6,@ax
Thus, the gradients control our position in k-space. The

design of an MRI pulse sequence requires us to
efficiently cover enough of k-space to form our image.
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K-space trajectory
G,

///

— k

X

k(1) k(1) B !

'J/ t
k(0= [.6.(0dr
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Units

Spatial frequencies (k,, k,) have units of 1/distance.
Most commonly, 1/cm

Gradient strengths have units of (magnetic field)/
distance. Most commonly G/cm or mT/m

y/(2w) has units of Hz/G or Hz/Tesla.
A
k(D =2— [G.(v)dr

=[Hz/Gauss][Gauss /cm][sec]
=[1/cm]
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Example
G,(t) = 1 Gauss/cm

t
t, = 0.235ms

ky /

///

— k

X

k() k(1) B } !

k(1) =£f(:Gy(‘r)dr I'em

=4257Hz/G-1G/em-0.235x107s
=lcm™
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