Bioengineering 280A
Principles of Biomedical Imaging
Fall Quarter 2009
MRI Lecture 2a

TT Liu, BE280A, UCSD Fall 2009

Gradient Fields

Define

$$
\vec{G} \equiv G_{x} \hat{i}+G_{y} \hat{j}+G_{z} \hat{k} \quad \vec{r} \equiv x \hat{i}+y \hat{j}+z \hat{k}
$$

So that

$$
G_{x} x+G_{y} y+G_{z} z=\vec{G} \cdot \vec{r}
$$

Also, let the gradient fields be a function of time. Then the z-directed magnetic field at each point in the volume is given by :

$$
B_{z}(\vec{r}, t)=B_{0}+\vec{G}(t) \cdot \vec{r}
$$

TTLLu, BE280A, UCSD Fall 2009

Time-Varying Gradient Fields

In the presence of time-varying gradients the frequency as a function of space and time is:

$$
\begin{aligned}
\omega(\vec{r}, t) & =\gamma \boldsymbol{B}_{z}(\vec{r}, t) \\
& =\gamma \boldsymbol{B}_{0}+\gamma \vec{G}(t) \cdot \vec{r} \\
& =\omega_{0}+\Delta \omega(\vec{r}, t)
\end{aligned}
$$

TT Liu, BE280A, UCSD Fall 2009

Phase

Phase $=$ angle of the magnetization phasor
Frequency $=$ rate of change of angle (e.g. radians/sec) Phase $=$ time integral of frequency

$$
\begin{aligned}
\varphi(\vec{r}, t) & =-\int_{0}^{t} \omega(\vec{r}, \tau) d \tau \\
& =-\omega_{0} t+\Delta \varphi(\vec{r}, t)
\end{aligned}
$$

Where the incremental phase due to the gradients is

$$
\begin{aligned}
\Delta \varphi(\vec{r}, t) & =-\int_{0}^{t} \Delta \omega(\vec{r}, \tau) d \tau \\
& =-\int_{0}^{t} \gamma \vec{G}(\vec{r}, \tau) \cdot \vec{r} d \tau
\end{aligned}
$$

TT Liu, BE280A, UCSD Fall 2009

Time-Varying Gradient Fields

The transverse magnetization is then given by

$$
\begin{aligned}
M(\vec{r}, t) & =M(\vec{r}, 0) e^{-t / T_{2}(\vec{r})} e^{\varphi(\vec{r}, t)} \\
& =M(\vec{r}, 0) e^{-t / T_{2}(\vec{r})} e^{-j \omega_{0} t} \exp \left(-j \int_{o}^{t} \Delta \omega(\vec{r}, t) d \tau\right) \\
& =M(\vec{r}, 0) e^{-t / T_{2}(\vec{r})} e^{-j \omega_{0} t} \exp \left(-j \gamma \int_{o}^{t} \vec{G}(\tau) \cdot \vec{r} d \tau\right)
\end{aligned}
$$

TT Liu, BE280A, UCSD Fall 2009

Phase with constant gradient

$=-\Delta \omega(\vec{r}) t_{2}$
if $\Delta \omega$ is non - time varying.
TT Liu, BE280A, UCSD Fall 2009

Signal Equation

Signal from a volume

$$
s_{r}(t)=\int_{V} M(\vec{r}, t) d V
$$

$$
=\int_{x} \int_{y} \int_{z} M(x, y, z, 0) e^{-t / T_{2}(\vec{r})} e^{-j \omega_{0} t} \exp \left(-j \gamma \int_{o}^{t} \vec{G}(\tau) \cdot \vec{r} d \tau\right) d x d y d z
$$

For now, consider signal from a slice along z and drop the T_{2} term. Define $m(x, y) \equiv \int_{z_{0}-\Delta z / 2}^{z_{0}+\Delta z / 2} M(\vec{r}, t) d z$

To obtain

$$
s_{r}(t)=\int_{x} \int_{y} m(x, y) e^{-j \omega_{o} t} \exp \left(-j \gamma \int_{o}^{t} \vec{G}(\tau) \cdot \vec{r} d \tau\right) d x d y
$$

TT Liu, BE280A, UCSD Fall 2009

Signal Equation

Demodulate the signal to obtain

$$
\begin{aligned}
s(t) & =e^{j \omega_{o} t} s_{r}(t) \\
& =\int_{x} \int_{y} m(x, y) \exp \left(-j \gamma \int_{o}^{t} \vec{G}(\tau) \cdot \vec{r} d \tau\right) d x d y \\
& =\int_{x} \int_{y} m(x, y) \exp \left(-j \gamma \int_{o}^{t}\left[G_{x}(\tau) x+G_{y}(\tau) y\right] d \tau\right) d x d y \\
& =\int_{x} \int_{y} m(x, y) \exp \left(-j 2 \pi\left(k_{x}(t) x+k_{y}(t) y\right)\right) d x d y
\end{aligned}
$$

Where

$$
\begin{aligned}
& k_{x}(t)=\frac{\gamma}{2 \pi} \int_{0}^{t} G_{x}(\tau) d \tau \\
& k_{y}(t)=\frac{\gamma}{2 \pi} \int_{0}^{t} G_{y}(\tau) d \tau
\end{aligned}
$$

TT Liu, BE280A, UCSD Fall 2009

MR signal is Fourier Transform

$$
\begin{aligned}
s(t) & =\int_{x} \int_{y} m(x, y) \exp \left(-j 2 \pi\left(k_{x}(t) x+k_{y}(t) y\right)\right) d x d y \\
& =M\left(k_{x}(t), k_{y}(t)\right) \\
& =F[m(x, y)]_{k_{x}(t), k_{y}(t)}
\end{aligned}
$$

TTL Liu, BE280A, UCSD Fall 2009

Recap

- Frequency $=$ rate of change of phase.
- Higher magnetic field $->$ higher Larmor frequency $->$ phase changes more rapidly with time.
- With a constant gradient G_{x}, spins at different x locations precess at different frequencies $\rightarrow>$ spins at greater x-values change phase more rapidly.
- With a constant gradient, distribution of phases across x locations changes with time. (phase modulation)
- More rapid change of phase with $x->$ higher spatial frequency k_{x}

TT Liu, BE280A, UCSD Fall 2009

K-space

At each point in time, the received signal is the Fourier transform of the object

$$
s(t)=M\left(k_{x}(t), k_{y}(t)\right)=F[m(x, y)]_{k_{x}(t), k_{y}(t)}
$$

evaluated at the spatial frequencies:

$$
\begin{aligned}
& k_{x}(t)=\frac{\gamma}{2 \pi} \int_{0}^{t} G_{x}(\tau) d \tau \\
& k_{y}(t)=\frac{\gamma}{2 \pi} \int_{0}^{t} G_{y}(\tau) d \tau
\end{aligned}
$$

Thus, the gradients control our position in k-space. The design of an MRI pulse sequence requires us to efficiently cover enough of k-space to form our image

TT Liu, BE280A, UCSD Fall 200

Units

Spatial frequencies ($\mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}}$) have units of $1 /$ distance. Most commonly, $1 / \mathrm{cm}$

Gradient strengths have units of (magnetic field)/ distance. Most commonly G / cm or mT / m
$\gamma /(2 \pi)$ has units of Hz / G or $\mathrm{Hz} /$ Tesla.

$$
k_{x}(t)=\frac{\gamma}{2 \pi} \int_{0}^{t} G_{x}(\tau) d \tau
$$

$=[\mathrm{Hz} /$ Gauss $][$ Gauss $/ \mathrm{cm}][\mathrm{sec}]$ $=[1 / \mathrm{cm}]$
TT Liu, BE280A, UCSD Fall 2009

