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Gradient Fields	



  

€ 

Gx x + Gy y + Gzz =
 
G ⋅  r 

  

€ 

 
G ≡Gx

ˆ i + Gy
ˆ j + Gz

ˆ k 

  

€ 

Bz(
 r ,t) = B0 +

 
G (t) ⋅  r 

Define 	



  

€ 

 r ≡ xˆ i + yˆ j + z ˆ k 
So that 	



Also, let the gradient fields be a function of time. Then 
the z-directed magnetic field at each point in the 
volume is given by :  	
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Static Gradient Fields	



€ 

M(t) = M(0)e− jω0te− t /T2

In a uniform magnetic field, the transverse magnetization 
is given by: 	



In the presence of non time-varying gradients we have 	



  

€ 

M (
 
r ) = M (

 
r ,0)e− jγBz (

 
r )te− t /T2 (

 
r )

= M (
 
r ,0)e− jγ (B0+

 
G ⋅
 
r )te− t /T2 (

 
r )

= M (
 
r ,0)e− jω0te− jγ

 
G ⋅
 
r te− t /T2 (

 
r )
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Time-Varying Gradient Fields	


In the presence of time-varying gradients the frequency 
as a function of space and time is: 	



  

€ 

ω
 r ,t( ) = γBz(

 r ,t)

= γB0 + γ
 
G (t) ⋅  r 

=ω0 + Δω( r ,t)
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Phase	


Phase = angle of the magnetization phasor	


Frequency = rate of change of angle (e.g. radians/sec)	


Phase = time integral of frequency	



  

€ 

Δϕ
 
r ,t( ) = − Δω(

 
r ,τ )

0

t

∫ dτ

= − γ
 

G (
 
r ,τ ) ⋅

 
r 

0

t

∫ dτ

  

€ 

ϕ
 r ,t( ) = − ω( r ,τ )

0

t
∫ dτ

= −ω0t + Δϕ
 r ,t( )

Where the incremental phase due to the gradients is	
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Phase with constant gradient	



  

€ 

Δϕ
 r ,t3( ) = − Δω( r ,τ )

0

t3∫ dτ

  

€ 

Δϕ
 r ,t2( ) = − Δω( r ,τ )

0

t2∫ dτ

= −Δω( r )t2  
if Δω is non - time varying.

  

€ 

Δϕ
 r ,t1( ) = − Δω( r ,τ )

0

t1∫ dτ
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Time-Varying Gradient Fields	


The transverse magnetization is then given by 	



  

€ 

M( r ,t) = M( r ,0)e− t /T2 (
 
r )eϕ (

 
r ,t )

= M( r ,0)e− t /T2 (
 
r )e− jω0t exp − j Δω

 r ,t( )dτ
o

t
∫( )

= M( r ,0)e− t /T2 (
 
r )e− jω0t exp − jγ

 
G (τ) ⋅  r dτ

o

t
∫( )
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Signal Equation	


Signal from a volume	



  

€ 

sr(t) = M( r ,t)
V∫ dV

= M(x,y,z,0)e− t /T2 (
 
r )e− jω0t exp − jγ

 
G (τ) ⋅  r dτ

o

t
∫( )z∫y∫x∫ dxdydz

For now, consider signal from a slice along z and drop 
the T2 term. Define  	



  

€ 

m(x,y) ≡ M( r ,t)
z0−Δz / 2

z0 +Δz / 2
∫ dz

  

€ 

sr(t) = m(x,y)e− jω0t exp − jγ
 
G (τ) ⋅  r dτ

o

t
∫( )y∫x∫ dxdy

To obtain 	
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Signal Equation	


Demodulate the signal to obtain 	



  

€ 

s(t) = e jω 0t sr(t)

= m(x,y)exp − jγ
 
G (τ ) ⋅  r dτ

o

t
∫( )y∫x∫ dxdy

= m(x,y)exp − jγ Gx (τ)x + Gy (τ)y[ ]dτo

t
∫( )y∫x∫ dxdy

= m(x,y)exp − j2π kx (t)x + ky (t)y( )( )y∫x∫ dxdy

€ 

kx (t) =
γ
2π

Gx (τ )dτ0

t
∫

ky (t) =
γ
2π

Gy (τ )dτ0

t
∫

Where	
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MR signal is Fourier Transform	



€ 

s(t) = m(x,y)exp − j2π kx (t)x + ky (t)y( )( )y∫x∫ dxdy

= M kx (t),ky (t)( )
= F m(x,y)[ ] kx (t ),ky (t )
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Recap	


•  Frequency = rate of change of phase.	


•  Higher magnetic field -> higher Larmor frequency -> 

phase changes more rapidly with time.	


•  With a constant gradient Gx,  spins at different x locations 

precess at different frequencies -> spins at greater x-values 
change phase more rapidly.	



•  With a constant gradient, distribution of phases across x 
locations changes with time. (phase modulation)	



•  More rapid change of phase with x -> higher spatial 
frequency kx	
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K-space	



€ 

s(t) = M kx (t),ky (t)( ) = F m(x,y)[ ] kx ( t ),ky ( t )

€ 

kx (t) =
γ
2π

Gx (τ )dτ0

t
∫

ky (t) =
γ
2π

Gy (τ )dτ0

t
∫

At each point in time, the received signal is the Fourier 
transform of the object	



evaluated at the spatial frequencies:	



Thus, the gradients control our position in k-space. The 
design of an MRI pulse sequence requires us to 
efficiently cover enough of k-space to form our image.	
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K-space trajectory	


Gx(t)	



t	



€ 

kx (t) =
γ
2π

Gx (τ )dτ0

t
∫

t1	

 t2	



kx	



ky	



€ 

kx (t1)

€ 

kx (t2)
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Units	


Spatial frequencies (kx, ky) have units of 1/distance.  
Most commonly, 1/cm	



Gradient strengths have units of (magnetic field)/
distance. Most commonly G/cm or mT/m	



γ/(2π) has units of  Hz/G or Hz/Tesla. 	



€ 

kx (t) =
γ
2π

Gx (τ )dτ0

t

∫

= [Hz /Gauss][Gauss /cm][sec]
= [1/cm]
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Example	


Gx(t) = 1 Gauss/cm	



t	



€ 

kx (t2) =
γ

2π
Gx (τ )dτ

0

t

∫
= 4257Hz /G ⋅1G /cm ⋅0.235×10−3 s
=1 cm−1

kx	



ky	



€ 

kx (t1)

€ 

kx (t2)

t2 =  0.235ms	



1 cm	




