Simplified Drawing of Basic Instrumentation.
Body lies on table encompassed by coils for static field B_0, gradient fields (two of three shown), and radiofrequency field B_1. Image, caption: copyright Nishimura, Fig. 3.15

RF Excitation

At equilibrium, net magnetization is parallel to the main magnetic field. How do we tip the magnetization away from equilibrium?

B_1 radiofrequency field tuned to Larmor frequency and applied in transverse (xy) plane induces nutation (at Larmor frequency) of magnetization vector as it tips away from the z-axis. Lab frame of reference.
RF Excitation

\[B_1(t) = 2B_1(t)\cos(\omega t)i \]

\[= B_1(t)(\cos(\omega t)i - \sin(\omega t)j) + B_1(t)(\cos(\omega t)i + \sin(\omega t)j) \]

Nishimura 1996.
Rotating Frame Bloch Equation

\[\frac{d M_{\text{rot}}}{dt} = M_{\text{rot}} \times \gamma B_{\text{eff}} \]

\[B_{\text{eff}} = B_{\text{rot}} + \omega_{\text{rot}} \gamma = B_1(t)\hat{i} + B_0\hat{k} \]

Note: we use the RF frequency to define the rotating frame. If this RF frequency is on-resonance, then the main B0 field doesn’t cause any precession in the rotating frame. However, if the RF frequency is off-resonance, then there will be a net precession in the rotating frame that is give by the difference between the RF frequency and the local Larmor frequency.

Let \(B_{\text{rot}} = B_1(t)\hat{i} + B_0\hat{k} \)

\[B_{\text{eff}} = B_{\text{rot}} + \frac{\omega_{\text{rot}}}{\gamma} \]

\[= B_1(t)\hat{i} + \left(B_0 - \frac{\omega}{\gamma} \right)\hat{k} \]

If \(\omega = \omega_0 \)

\[= \gamma B_0 \]

Then \(B_{\text{eff}} = B_1(t)\hat{i} \)
Flip angle
\[\theta = \int_0^r \omega_1(s) ds \]
\[\omega_1(t) = \gamma B_1(t) \]
Let $B_{rot} = B_1(t)i + (B_0 + \gamma G_z)k$

$$B_{eff} = B_{rot} + \frac{\omega_{rot}}{\gamma}$$

$$= B_1(t)i + (B_0 + \gamma G_z - \frac{\omega}{\gamma})k$$

If $\omega = \omega_0$

$$B_{eff} = B_1(t)i + (\gamma G_z)k$$

Small Tip Angle Approximation

![Diagram](image)

For small θ

$$M_z = M_0 \cos \theta \approx M_0$$

$$M_{xy} = M_0 \sin \theta \approx M_0 \theta$$

Excitation k-space

At each time increment of width $\Delta \tau$, the excitation $B_1(\tau)$ produces an increment in magnetization of the form $\Delta M_{xy} = JM_{xy}(\tau)\Delta \tau$

(small tip angle approximation)

In the presence of a gradient, this will accumulate phase of the form $\phi = -\gamma \int G_z(s)ds$, such that the incremental magnetization at time t is

$$\Delta M_{xy}(t; z; \tau) = JM_{xy}(\tau)\exp\left(-j\frac{\gamma}{\omega} \int G_z(s)ds\right)\Delta \tau$$

Integrating over all time increments, we obtain

$$M_{xy}(t; z) = JM_{xy} \int G_z(s)ds \exp\left(-j\frac{\gamma}{\omega} \int G_z(s)ds\right)\Delta \tau$$

$$= JM_{xy} \int G_z(s)ds \exp\left(j2\pi k(t; \tau)z\right)\Delta \tau$$

where $k(t; \tau) = -\frac{\gamma}{2\pi} \int G_z(s)ds$

Pauly et al 1989
Excitation k-space

\[M_\omega(t,z) = jM_0 \int_{-\tau}^{\tau} \gamma B_i(\tau) \exp(j2\pi k(\tau, t)z) d\tau \]

This has the form of an inverse Fourier transform, where we are integrating the contributions of the field \(B_i(\tau) \) at the k-space point \(k(\tau, t) \).

Small Tip Angle Example

\[B_i(t) = B_{rect} \left(\frac{\tau}{T} \right) \]

\[M_i(\tau/2, z) = jM_0 \exp(-j\omega_z \tau/2) F^{-1} \left[jM_0 \exp(-j\omega_z \tau/2) F \left[\frac{\gamma G}{2\pi} \right] \right] \]

For a constant gradient:

\[k_i(t, r) = \frac{1}{2\pi} G_z (r - t) \]

\[d\tau = \frac{2\pi}{\gamma G_z} dk_z \]

\[M_\omega(t, z) = jM_0 \int_{-\tau}^{\tau} \gamma B_i(\tau) \exp(j2\pi k(\tau, t)z) d\tau \]

\[= jM_0 \int_{-\tau}^{\tau} \gamma B_i(\tau) \exp(j2\pi k_0 z) \frac{2\pi}{\gamma G_z} dk_z \]

\[= jM_0 \exp(-j\omega_z t) F^{-1} \left[j\gamma B_i(k_z) \right] \]

Refocusing

\[M_r(\tau, z) = \exp(j\omega_z t/2) M_i(\tau, z) \]

\[= jM_0 \exp(j\omega_z t/2) \exp(-j\omega_z t/2) F^{-1} \left[j\gamma B_i(k_z) \right] \]

For a constant gradient:

\[k_r(t, r) = \frac{1}{2\pi} G_z (r - t) \]

\[d\tau = \frac{2\pi}{\gamma G_z} dk_z \]

\[M_r(t, z) = jM_0 \int_{-\tau}^{\tau} \gamma B_i(\tau) \exp(j2\pi k(\tau, t)z) d\tau \]

\[= jM_0 \int_{-\tau}^{\tau} \gamma B_i(\tau) \exp(j2\pi k_0 z) \frac{2\pi}{\gamma G_z} dk_z \]

\[= jM_0 \exp(-j\omega_z t) F^{-1} \left[j\gamma B_i(k_z) \right] \]

Nishimura 1996
Refocusing

\[M_\text{o}(t,z) = jM_0 \int_{-\infty}^{\infty} B_1(\tau) \exp(j2\pi k(\tau,t)z) d\tau \]

This has the form of an inverse Fourier transform, where we are integrating the contributions of the field \(B_1(\tau) \) at the \(k \)-space point \(k(\tau,t) \).

Slice Selection

\[k(\tau,t) = \frac{\gamma G_z z}{2\pi} \]

Small Tip Angle Example

\[B_1(t) = \text{Asinc}(t/\tau) \left(0.5 + 0.46\cos\left(\frac{2\pi}{\tau}\right) \right) \]

\[F^{-1}(B_1(k_z)) = \text{rect} \left(\frac{2\gamma G_z z}{\tau} \right) W \left(\frac{\gamma G_z z}{2\pi} \right) \]

First zero in \(k_z \) space is at \(\frac{\gamma G_z z}{2\pi} \)

Therefore, width of the rect function is \(\Delta z = \frac{2\pi}{\gamma G_z z} \)
Slice Selection

Example
\(\Delta z = 5 \text{ mm}; \tau = 400 \mu\text{sec}; \theta = \pi/2 \)

\[
G_z = \frac{2\pi}{\gamma \Delta z \tau} \left(\frac{1}{4257 \text{Hz}/(G)(0.5 \text{cm})(400e-6)} \right) = 1.175 \text{ G/cm}
\]

\[
\theta = \gamma \int_0^\infty B_i \sin \left(\frac{s - T/2}{\tau} \right) ds \approx \gamma B_i \cdot \text{(area of sinc)} = \gamma B_i \tau
\]

\[
B_i = \frac{\theta}{\gamma \tau} \left(\frac{\pi/2}{2\pi(4257 \text{Hz}/G)(400e-6)} \right) = 0.1468 \text{ G}
\]

Time-Bandwidth Product (TBW)
\[
\text{sinc}(t/\tau) \ast \text{rect}(fT) \approx \text{rect}(fT) \ast 2N \gamma \text{sinc}(2Nf)
\]

Duration = \(2N\tau \)

Bandwidth = \(\frac{1}{\tau} \) ⇒ \(\Delta f = \frac{2\pi}{\gamma \Delta z \tau} \)

Transition Width = \(\frac{1}{2N\tau} \) ⇒ \(\Delta \tau' = \frac{2\pi}{\gamma \Delta z \tau} \)

Time – Bandwidth Product (TBW) = \(2N\tau \frac{1}{\tau} = 2N \)

also, \(\text{TBW} = \frac{\text{Bandwidth}}{\text{Transition Width}} \)

For a fixed duration pulse, we can increase TBW by increasing the Bandwidth.
(Note: this will also lead to an increase in N). This will require a higher B1 amplitude and a higher gradient to keep the slice width constant. Note that with higher TBW the physical transition width then decreases.

(Note 1996)

\[8 \]
Cardiac Tagging

Excitation k-space

Multi-dimensional Excitation k-space

\[M_x(t, \mathbf{r}) = jM_0 \int_{-\infty}^{t} \omega_0(\tau) \exp \left(-j\int_{\tau}^{t} G(s) \cdot \mathbf{r} ds \right) d\tau \]

\[= jM_0 \int_{-\infty}^{t} \omega_0(\tau) \exp \left(j2\pi \mathbf{k}(\tau) \cdot \mathbf{r} \right) d\tau \]

where \(\mathbf{k}(\tau) = -\frac{\gamma}{2\pi} \int_{\tau}^{t} G(\tau') dt' \)

Pauly et al 1989

Excitation k-space

Panich MRM 1999