09/24/09 HO #1

INFORMATION SHEET

Instructor:	Thomas Liu, Department of Radiology Center for Functional Magnetic Resonance Imaging (fMRI), Room 1001 (858) 822-0542, <u>ttliu@ucsd.edu</u>
Teaching Assistant:	Jia (Tim) Guo (Office hours: Mondays:TBD; Wednesdays 3:30 to 4:30 pm in Center for fMRI Conference Room)
Lectures:	Tuesdays/Thursdays 9:30 a.m. to 10:50 a.m., Powell-Focht Bioengineering Hall, Room 161
Office Hours:	Tuesdays 4 to 5 pm; Wednesdays 12 pm to 1 pm or by appointment. Center for fMRI Conference Room.
Prerequisites:	Graduate Standing or Consent of Instructor.
Required Texts:	Medical Imaging Signals and Systems, Jerry L. Prince and Johnathan M. Links, Prentice Hall 2006. Errata available at http://iacl.ece.jhu.edu/~prince/mibook/mierrata-v1.03.pdf
	Principles of Magnetic Resonance Imaging, Dwight G. Nishimura (we will order copies of this from the author)
Course Web Site:	http://cfmriweb.ucsd.edu/ttliu/BE280A_09.html (mirror site: http://fmriserver.ucsd.edu/ttliu/BE280A_09.html) Lecture notes will be posted on the web by 5 p.m. the day before the class.
Course e-mail list:	Course e-mails will be sent through StudentLink to registered students.
Course Description:	Fundamentals of Fourier transform and linear systems theory including convolution, sampling, noise, filtering, image reconstruction, and visualization with an emphasis on applications to biomedical imaging. Examples from optical imaging, CT, MRI, ultrasound, nuclear, PET, and radiography.
Grading:	25% Homework/Quizzes/Class Participation, 35% Midterm Project, 40% Final Project

9/19/09

Tentative Syllabus

Week 1	
Thursday 9/24	Course Policies, Overview of Imaging Modalities; CT example
Week 2	
Tuesday 9/29 Thursday 10/01	X-rays: Basic Physics; Contrast; Source and object magnification. X-ray imaging solution; Delta functions and signal expansions; impulse response.
Week 3	
Tuesday 10/06	Review Signal Expansions; Linearity; Superposition; Shift Invariance; Convolution
Thursday 10/08	X-ray imaging equation; Begin CT;
Week 4	
Tuesday 10/13 Thursday 10/15	Radon Transform; Backprojection; Begin Fourier Transforms; Fourier Transform theorems; Modulation Transfer Function.
Week 5	
Tuesday 10/20 Thursday 10/22	Convolution Theorem; CT: Projection Slice Theorem; Filtered back projection; Sampling: 1D and 2D sampling, Whitaker-Shannon sampling theorem, aliasing; Application to CT
Week 6	
Tuesday 10/27	MRI: Overview, Basic physics, Bloch Equation MRI: Gradients, Signal Equation, Spin-warp pulse sequence
Thursday 10/29	Sampling Reviewed; MRI: Resolution and sampling requirements
Week 7	
Tuesday 11/03	MRI: Slice Selection; RF Pulse design
Thursday 11/05	MRI: Image Contrast and Noise
Week 8	
Tuesday 11/10 Thursday 11/12	MRI: Fast Imaging Methods MRI: Advanced Image Reconstruction
Thatsaay 11/12	
Week 9	MPL Applications
Thursday 11/19	Ultrasound: Overview and basic physics
Week 10	
Tuesday 11/24 Thursday 11/26	Ultrasound: Beam formation; Scanning; Sampling Reviewed NO CLASS: Thanksgiving Holiday
Week 11	
Tuesday 12/01 Thursday 12/03	Ultrasound: Phased Array systems, Doppler Emerging Modulities
1 hulsuay 12/03	
Week 12 Finals Week	Final project presentations (8 am to 11 am) on day of scheduled final.