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What is diffusion and 
why do we care about it?

Self-diffusion is the thermally driven random motions of molecules 
that occurs in the absence of a concentration gradient

The self-diffusion of water is ongoing in the human body and its 
characteristics depend on the local tissue 

architecture and physiology

Therefore the ability to measure self-diffusion offers the possibility of 
non-invasively measuring tissue structure and physiology



Inferring the Microscopic 
from The Macroscopic

Lucretius (ca. 99BC-55BC)
Roman philosopher and poet

You will see a multitude of tiny particles mingling 
in a multitude of ways... 
"Observe what happens when sunbeams are admitted 
into a building and shed light on its shadowy places. 
their dancing is an actual indication of underlying 
movements of matter that are hidden from our sight...”

http://www.youtube.com/eYeFractal

http://www.youtube.com
http://www.youtube.com


Convection vs Diffusion
A Cautionary Note

The large scale swirling of the dust particles is primarily 
due to air currents (convection) but the much smaller scale

 jittery movements are diffusion

Convection



A Brief History of Diffusion Measurement

Jan Ingenhousz (1730 – 1799)
Dutch botanist and physiologist

Described the “irregular movements” of coal dust 
on the surface of alcohol



A Brief History of Diffusion Measurement

Robert Brown (1773 – 1858)
British botanist and surgeon

“Brownian Motion”

Fat droplets in water

http://www.microscopy-uk.org.uk

Observation: 
irregular movement of pollen granules in water

Brown’s hypothesis:  They’re alive
Experiment: Repeat pollen experiment using tiny shards of window glass

Result:  Same!
Conclusion: Not alive

Theory: ???



Einstein’s Theory of Brownian Motion

Albert Einstein (1879 – 1955)
German patent clerk and physicist

Einstein’s Theory

Part 1: Equation describing motion of a Brownian particle

Part 2: Relate diffusion to experimentally measurable quantities



Einstein Theory of Brownian Motion
Part I
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The Diffusion Equation

The particle density ⇢(x, t) at a position x at time t obeys

diffusion coefficient



Einstein Theory of Brownian Motion
Part I

The solution to the Diffusion Equation 
for particles initially at location x0

This is a Gaussian (or Normal) distribution 
with mean position

and variance in the position

⇢(x, t) =
1p
4⇡Dt

e

�(x�x0)
2
/4Dt

x̄ = x0

�

2
x

= (x� x0)2 = 2Dt



Einstein Theory of Brownian Motion
Part I

implies that, on average, 
the particles do not move from their initial position 

implies that the variance of a Brownian particle’s 
position is proportional to the diffusion coefficient D 

and time t

What does this mean?

x̄ = x0

�2
x

= 2Dt



Einstein Theory of Brownian Motion
Part I

and thus not linearly proportional to time (like flow), 
but to the square root of time

Einstein argued that the displacement 
of a Brownian particle is thus the RMS distance 

Diffusion in Brain Tissue:
D ≅ 1 µ2/ ms = (0.001 mm2/s)

For t=100 msec, Δx ≅ 14 µ

�x =
q
(x� x0)2 =

p
2Dt



Gaussian Diffusion
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Diffusion vs Flow
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Einstein Theory of Brownian Motion
Part II

The diffusion coefficient is 

where
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gas constant
Avogadro’s

number
T = temperature⌘ = viscosityr = particle radius
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Diffusion coefficient goes up with temperature
and down with viscosity and particle radius

It’s sensitive to the local environment!



Modeling diffusion: Random Walk

MRI is all about mapping the locations of molecules ...

 ... we need a way to model the spatial locations 
of Brownian molecules as a function of time



⌧ = constant

Modeling diffusion: Random Walk



⌧ = constant

Modeling diffusion: Random Walk



Gaussian diffusion
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Modeling diffusion: Random Walk

The distribution of particles after a time τ 

P (x|x0, ⌧) ⇠ N(x0,�
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isotropic diffusion in 2D
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Diffusion Dimensions
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Probability Contours
(isotropic diffusion)



Anisotropic diffusion in 2D
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Covariance matrix
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Diffusion Anisotropy in neural tissues

Dk ⇡ 3D?

(1.2µ2/ms) (0.4µ2/ms)

Dk

D?

microtubules 
and 

neurofilaments

myelin sheath

axonal membrane



Diffusion Anisotropy in 3D

probability contours in 3D

eigenvectors
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We’ve described the spatial and 
Temporal characteristics of the 

molecules.  

What is the influence of this on the 
MRI signal?

The Sensitivity of MRI to Diffusion
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The Bipolar Gradient Pulse (spin echo)
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Echo-Planar Imaging
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Key Fact

Only diffusion along the direction of the 
applied gradient has an effect



early NMR measurements of Diffusion
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Signal and Distribution are 
Fourier Transform pairs

s(q, �) =
�

P (r̄, �)e�iq·r̄dr̄

P (r̄, �) =
�

s(q, �)eiq·r̄dq

The Diffusion Weighted Signal

So, in principal, you can measure P(r,τ)  by collecting
data throughout q-space, just like imaging.

In practice, very time consuming



S(b) = S(0) e�bD + ⌘S(b) = S(0) e�bD + ⌘

b = q2⌧

The Estimation Problem
for Gaussian Diffusion
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The signal from Gaussian Diffusion

s(b) = s(0)e�bD + �(b)
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The b-value
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The b-value
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What gradients are doing to k-space
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spatial modulation of the phase
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Covariance matrix
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Measuring the Diffusion Tensor
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Measuring the Diffusion Tensor

fiber axis
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The Shape of Diffusion

fiber
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The Estimation of Diffusion
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2.  The orientation of the eigenvectors is related to the 
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Anisotropic diffusion in 2D
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The 3D Gaussian Distribution:

Covariance matrix Diffusion Tensor
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�

The Diffusion Tensor

{~e1,~e2,~e3}

are the three unique directions along which the 
molecular displacements are uncorrelated

The three eigenvectors of D

The three eigenvalues of D

are the principle diffusivities
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The 2D Gaussian Distribution:

Covariance matrix Diffusion Tensor

r = {x, y}

⌃ =

✓
�2
x

0
0 �2

y

◆
= 4⌧

✓
D

x

0
0 D

y

◆

-6 -4 -2 2 4
x

-3

-2

-1

1

2

3

y

-6

-4

-2

2

4

x

-3

-2

-1

1

2

3

y

P (r|r0, ⌧) ⇠ N(r0,⌃)



Generally fibers are not aligned 
along magnet coordinates!

rotated relative to laboratory 
coordinate system

same orientation as laboratory 
coordinate system

laboratory 
coordinate system



The 3D Gaussian Distribution:

Covariance matrix Diffusion Tensor

scanner coordinate system
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The 3D Gaussian Distribution:

Covariance matrix
Diffusion Tensor

scanner coordinate system
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Tensor Rotations
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A baseball is spherical - it has no sense of orientation... but a football is ellipsoidal, and does!



What we want
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The Estimation of Diffusion
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Extension to Imaging
(Finally!)



The Bipolar Gradient Pulse (spin echo)
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Because the diffusion weighting does not interfere with the stationary tissue 
signal, we can “insert” it into a standard imaging procedure 
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DTI voxel signal
from multiple images at 

different directions

reconstruct D
(diffusion ellipsoid)



Why Does DTI Work at All?



Diffusion acts as a convolution in the image domain
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Diffusion Ellipsoid

diffusion ellipsoids



Average Diffusion in a voxel

<D>  =  ( λ1 + λ2 + λ3 )/3 = <λ> 

Tr = Trace = sum of diagonal elements

Three eigenvalues of D are the three 
principle mean-squared displacements along 

its three principal directions
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Average Diffusion in a voxel

anatomical

mean D



Diffusion Anisotropy in a voxel

One measure of diffusion anisotropy is the variance of the 
eigenvalues, normalized to the mean-squared eigenvalue
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Diffusion Anisotropy in a voxel
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Diffusion Anisotropy 



Streeter, 1969

Streeter et al. 1969

Endocardium

Epicardium

Legrice et al. 1994Our first whole human heart DTI (ex vivo)
Excised canine heart (Howard, UCSD Cardiac Biomechanics Group 2011) using

3D Spiral FSE DTI sequence (Frank et al, Neuroimage 2010) 

The uses of anisotropy:
Cardiac Mechanics



From local (voxel) anisotropy to extended 
spatially coherent anisotropy:

Tractography
Local Anisotropy Local/Global Coherence

Dk ⇡ 3D?

(1.2µ2/ms) (0.4µ2/ms)

Dk

D?

voxel



Streamlines

Flow vector field

(principal eigenvector)

analogy

Estimated orientationhigh

low

Anisotropy



What we expect of Diffusion Imaging

...the primary diffusion 
direction should be oriented in 
the same direction as the fiber.

For voxels with aligned 
fibers (as in the corpus 

callosum)...

Some information about the microscopic structure



Anterior

Supraspinatus

Subscapularis

Infraspinatus
+ Teres Minor

Posterior

Supraspinatus

Supraspinatus DTI

Subscapularis

A. Rodrigues-Soto,
Ward group



Anterior

Supraspinatus

Subscapularis

Infraspinatus
+ Teres Minor

Posterior

Supraspinatus

Infraspinatus
Subscapularis

Supraspinatus DTI

A. Rodrigues-Soto,
Ward group



Supraspinatus Tractography @60 directions

A. Rodrigues-Soto,
Ward group



Segmentation: K. Yopak, CSCI

What is the Neural Structure of Elasmobranchs?

Mustelus henlei Data: M. Tyszka, CalTech
R. Berquist, CSCI

Data: M. Tyszka, CalTech
R. Berquist, CSCIDTI @ 11.7T



Spinal Cord Injury
(Rat Model at 7T)

Jacob Koffler, Ph.D.
Mark H. Tuszynski, M.D., Ph.D. 
Center for Neural Repair
University of California, San Diego

spinal cord white matter

dorsal ramus
ventral ramus

spinal cord white matter

dorsal ramus
ventral ramus

But what’s happening here?



How much information can we extract?

According to Jonathon Hill of Arizona State University, the 
reason that the rock looks like an artificial construction is 
very simple: lack of resolution in the image.



In this work the double Pulsed Gradient Spin Echo
(d-PGSE) experiment [7–9] is used to detect or discover
whether gray matter exhibits microscopic diffusion anisot-
ropy. The d-PGSE sequence (Fig. 2) and its two-dimen-
sional variants [10] are already well-established
techniques in non-medical applications to characterize
local anisotropy of macroscopically isotropic materials,
such as liquid crystals [7,11] prolate yeast cells [8] and
plants [12].

The d-PGSE sequence consists of two single-PGSE
blocks, which are concatenated. The resulting spins from
the first PGSE block become the population of spins inter-
rogated by the second PGSE block. Because the resulting

echoes depend on the spin evolution in both encoding peri-
ods, these contain information about the spins’ diffusion
histories during both PGSE blocks.

To assess the presence of microscopic diffusion anisot-
ropy, one compares two d-PGSE experiments in which dif-
fusion sensitizing gradients are applied in the same and in
orthogonal directions. For microscopically isotropic mate-
rials, regardless of the diffusion gradient encoding direc-
tions, the resulting echo attenuations all superimpose.
However, in the case of materials that exhibit local anisot-
ropy, the resulting curves observed from the collinear and
orthogonal diffusion gradient encoding directions do not
superimpose. Consequently, a difference between these
curves indicates microscopic anisotropy.

To explore the origin of gray matter anisotropy, we also
constructed a ‘‘gray matter’’ phantom that is macroscopi-
cally isotropic and microscopically anisotropic. The phan-
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What’s the problem?



But we know Neural Tissues 
aren’t that simple

Rat WM electron microscopic image
Courtesy, M. Ellisman, UCSD



Failure of the standard model

A simple partial-volume model

Two crossing fibers resulting distributions
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Ambiguities in the standard model
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Failure of the standard model

Distribution of spins Estimated D



The Major Problem:
Heterogeneous Voxels
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Anisotropy



Tractography Problem



�

Failure of the standard model

Not only angular issues, but b-value dependencies as well!

500 1000 1500 2000 2500 3000
b

0.2

0.4

0.6

0.8

1.0
s

500 1000 1500 2000 2500 3000
b

-6

-5

-4

-3

-2

-1

Log@sD

S(b)

S(0)
= fe�bD1 + (1� f)e�bD2

simple two diffusion coefficient model

Indistinguishable regime
(looks like single D)



High Angular Resolution DTI (HARDI)
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Structure of lobes relative to fiber orientation is “non-intuitive”!



Tractography Problem, revisited

Higher order tensor fit to data



High Angular Resolution DTI (HARDI)

Standard DTI HARDI



Heterogeneous Voxels
and High Angular Resolution Sampling

a voxel with crossing fiber 
bundles and random 

spherical cells...

signal from 162 directions
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Simultaneous Multi-Scale Diffusion Estimation and
Tractography Guided by Entropy Spectrum

Pathways
Vitaly L. Galinsky and Lawrence R. Frank

Abstract—We have developed a method for the simultaneous

estimation of local diffusion and the global fiber tracts based upon

the information entropy flow that computes the maximum en-

tropy trajectories between locations and depends upon the global

structure of the multi-dimensional and multi-modal diffusion

field. Computation of the entropy spectrum pathways requires

only solving a simple eigenvector problem for the probability

distribution for which efficient numerical routines exist, and

a straight forward integration of the probability conservation

through ray tracing of the convective modes guided by a global

structure of the entropy spectrum coupled with a small scale local

diffusion. The intervoxel diffusion is sampled by multi b-shell

multi q-angle DWI data expanded in spherical waves. This novel

approach to fiber tracking incorporates global information about

multiple fiber crossings in every individual voxel and ranks it in

the most scientifically rigorous way. This method has potential

significance for a wide range of applications, including studies of

brain connectivity.

Index Terms—Magnetic Resonance Imaging, Diffusion

Weighted Imaging, Fiber Tractography, Brain Connectivity

I. INTRODUCTION

A

problem of significant interest in basic neuroscience
research and in a wide range of clinical applications is

the reconstruction of tissue fiber pathways from volumetric
diffusion weighted magnetic resonance imaging (DW-MRI)
data. This is an inherently ill-posed problem because the local
(voxel) diffusion measurements are noisy and made on a scale
significantly greater than the underlying fibers and thus there
are a multitude of possible neural pathways between any two
given points in the imaging volume that might be consistent
with the experimental data. The question then is to find the
paths that are most probable. Current fiber tractography meth-
ods generally fall into two categories: 1) deterministic meth-
ods, typically based on some form of streamline construction
(e.g., [1]–[3]) or 2) probabilistic methods, also generally based
on streamline construction, but with the most likely principal
diffusion direction determined from a posterior distribution of
principal diffusion directions (e.g., [4]–[7]). These algorithms
are ”local” in the sense that the computations are done at
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each voxel and some small neighborhood around it and thus
are not informed by the final path that is created, and thus
are not capable of assessing the probability of the final path
amongst all possible paths. In most cases, these algorithms are
inherently based upon some underlying relation to a random
walk which guides the evolution of the trajectories.

Recently, interest has grown in more ”global” methods that
aim to take into account the probabilities of the final paths by
incorporating the path probabilities into the estimation process.
These methods typically are based upon parameterizations
of the diffusion field, or the anatomical connections they
imply, that extend spatially beyond the voxel dimensions and
subsequently take the form of either improving the local
computations by the incorporation of more spatially extended
path lengths (e.g., [8], [9]) or on the extremization of a cost
function over a multitude of possible paths [10]–[13]). These
global methods usually (with some exceptions [11]) do not
take the random walk viewpoint but rather view the entire
system as possessing some underlying structure, characterized
by local interactions or potentials, that can be elucidated by
optimizing some cost function (e.g., energy) over multiple
configurations of that system.

The original diffusion tensor imaging (DTI) model assumes
that the measurements in each voxel provide an estimate of a
single real, 3 ⇥ 3 symmetric diffusion tensor D from whose
eigenstructure can be derived both a meaningful measure of
the anisotropy (here characterized by the fractional anisotropy
FA [14]) and a principal eigenvector that can be used as a
proxy for the fiber orientation [14]. Then DTI is the simplest
underlying model for diffusion tensor data, is predicated on a
single fiber model for the voxel content, and is equivalent to
a Gaussian model for diffusion (e.g., [14]). However, the DTI
model is not sufficient to capture more realistic possibilities of
complex fiber crossings needed for clinical applications [15].
To estimate local diffusion directions in each voxel (streamline
directions) several high angular resolution diffusion imaging
(HARDI) [16] methods are typically used. These methods
represent an extension of the original DTI method [17] to
higher angular resolutions appropriate not only for detection
of main fiber orientation, but also for attempting to resolve
more complex intravoxel fiber architecture such as multiple
crossing fibers [18]–[22].

In recent years, there has been significant interest in devel-
oping DW-MRI methods capable not only of estimating angu-
lar fiber distributions from multidirectional diffusion imaging
(multiple q-angles) [16], [19]–[23]), but also find spatial scales



DWI ESP

 (r0)

r0

dr

dt
=  (r)

dk

dt
=  2(r,k)

a

 (r0,k2)

 (r0,k1)

r0

dr

dt
=  (r,k)

dk

dt
= ⇠(r,k)

b



DWI ESP

a b



ESP vs RSI

RSIESP

FA



DWI ESP



DWI ESP

a b

c d



ESP full brain tractography



Conclusion

Diffusion MRI has a unique sensitivity 
to tissue architecture and physiology

However ...

...and diffusion sensitivity is relatively easy 
to incorporate into standard sequences

•Data artifact correction non-trivial
•Analysis is complicated
•Interpretation is difficult

But it’s really cool!



The End


