

2D Fourier Transform

Fourier Transform

$$
G\left(k_{x}, k_{y}\right)=F[g(x, y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) e^{-j 2 \pi\left(k_{x} x+k_{y}, y\right)} d x d y
$$

Inverse Fourier Transform

$$
g(x, y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G\left(k_{x}, k_{y}\right) e^{j 2 \pi\left(k_{x} x+k_{y}, y\right)} d k_{x} d k_{y}
$$

Gradients

Spins precess at the Larmor frequency, which is proportional to the local magnetic field. In a constant magnetic field $\mathrm{B}_{2}=\mathrm{B}_{0}$, all the spins precess at the same frequency (ignoring chemical shift).

Gradient coils are used to add a spatial variation to B_{z} such that $\mathrm{B}_{z}(x, y, z)=\mathrm{B}_{0}+\Delta \mathrm{B}_{\mathrm{z}}(x, y, z)$. Thus, spins at different physical locations will precess at different frequencies.

[^0]
Larmor Frequency

$\omega=\gamma$ B	Angular frequency in rad/sec
$\mathrm{f}=\gamma \boldsymbol{B} /(2 \pi)$	Frequency in cycles/sec or Hertz, Abbreviated Hz

For a 1.5 T system, the Larmor frequency is 63.86 MHz which is 63.86 million cycles per second. For comparison, KPBS-FM transmits at 89.5 MHz .

Note that the earth's magnetic field is about $50 \mu \mathrm{~T}$, so that a 1.5 T system is about 30,000 times stronger.

TT. Liu, BE280A, UCSD Fall 2014

TT. Liu, BE280A, UCSD Fall 2014
Hanson 2009

TT. Liu, BE280A, UCSD Fall 2014

Gradient Fields

$$
\begin{aligned}
B_{z}(x, y, z) & =B_{0}+\frac{\partial B_{z}}{\partial x} x+\frac{\partial B_{z}}{\partial y} y+\frac{\partial B_{z}}{\partial z} z \\
& =B_{0}+G_{x} x+G_{y} y+G_{z} z
\end{aligned}
$$

$\stackrel{\mathrm{z}}{\mathrm{L}_{\mathrm{y}}}$

$$
G_{z}=\frac{\partial B_{z}}{\partial z}>0 \quad G_{y}=\frac{\partial B_{z}}{\partial y}>0
$$

(c)

(d)

TT. Liu, BE280A, UCSD Fall 2014

Gradient Fields

Define

$$
\vec{G} \equiv G_{x} \hat{i}+G_{y} \hat{j}+G_{z} \hat{k} \quad \vec{r} \equiv x \hat{i}+y \hat{j}+z \hat{k}
$$

So that

$$
G_{x} x+G_{y} y+G_{z} z=\vec{G} \cdot \vec{r}
$$

Also, let the gradient fields be a function of time. Then the z-directed magnetic field at each point in the volume is given by :

$$
B_{z}(\vec{r}, t)=B_{0}+\vec{G}(t) \cdot \vec{r}
$$

TT. Liu, BE280A, UCSD Fall 201

Time-Varying Gradient Fields

In the presence of time-varying gradients the frequency as a function of space and time is:

$$
\begin{aligned}
\omega(\vec{r}, t) & =\gamma B_{z}(\vec{r}, t) \\
& =\gamma B_{0}+\gamma \vec{G}(t) \cdot \vec{r} \\
& =\omega_{0}+\Delta \omega(\vec{r}, t)
\end{aligned}
$$

TT. Liu, BE280A, UCSD Fall 2014

Phase with constant gradient

$$
\begin{aligned}
\varphi(\vec{r}, t) & =-\int_{0}^{t} \omega(\vec{r}, \tau) d \tau \\
& =-\omega_{0} t+\Delta \varphi(\vec{r}, t)
\end{aligned}
$$

Where the incremental phase due to the gradients is

$$
\begin{aligned}
\Delta \varphi(\vec{r}, t) & =-\int_{0}^{t} \Delta \omega(\vec{r}, \tau) d \tau \\
& =-\int_{0}^{t} \gamma \vec{G}(\vec{r}, \tau) \cdot \vec{r} d \tau
\end{aligned}
$$

TT. Liu, BE280A, UCSD Fall 2014

Time-Varying Gradient Fields

The transverse magnetization is then given by

$$
\begin{aligned}
M(\vec{r}, t) & =M(\vec{r}, 0) e^{-t / T_{2}(\vec{r})} e^{\varphi(\vec{r}, t)} \\
& =M(\vec{r}, 0) e^{-t / T_{2}(\vec{r})} e^{-j \omega_{0} t} \exp \left(-j \int_{o}^{t} \Delta \omega(\vec{r}, t) d \tau\right) \\
& =M(\vec{r}, 0) e^{-t / T_{2}(\vec{r})} e^{-j \omega_{0} t} \exp \left(-j \gamma \int_{o}^{t} \vec{G}(\tau) \cdot \vec{r} d \tau\right)
\end{aligned}
$$

TT. Liu, BE280A, UCSD Fall 2014

Signal Equation

Demodulate the signal to obtain

$$
\begin{aligned}
s(t) & =e^{j \omega_{0} t} s_{r}(t) \\
& =\int_{x} \int_{y} m(x, y) \exp \left(-j \gamma \int_{o}^{t} \vec{G}(\tau) \cdot \vec{r} d \tau\right) d x d y \\
& =\int_{x} \int_{y} m(x, y) \exp \left(-j \gamma \int_{o}^{t}\left[G_{x}(\tau) x+G_{y}(\tau) y\right] d \tau\right) d x d y \\
& =\int_{x} \int_{y} m(x, y) \exp \left(-j 2 \pi\left(k_{x}(t) x+k_{y}(t) y\right)\right) d x d y
\end{aligned}
$$

Where

$$
\begin{aligned}
& k_{x}(t)=\frac{\gamma}{2 \pi} \int_{0}^{t} G_{x}(\tau) d \tau \\
& k_{y}(t)=\frac{\gamma}{2 \pi} \int_{0}^{t} G_{y}(\tau) d \tau
\end{aligned}
$$

тT. Lii, BE280A, UCSD Fall 2014

Signal Equation

Signal from a volume
$s_{r}(t)=\int_{V} M(\vec{r}, t) d V$
$=\int_{x} \int_{y} \int_{z} M(x, y, z, 0) e^{-t / T_{2}(\vec{r})} e^{-j \omega_{0} t} \exp \left(-j \gamma \int_{o}^{t} \vec{G}(\tau) \cdot \vec{r} d \tau\right) d x d y d z$

For now, consider signal from a slice along z and drop the T_{2} term. Define $m(x, y) \equiv \int_{z_{0}-\Delta z / 2}^{z_{0}+\Delta z / 2} M(\vec{r}, t) d z$

To obtain

$$
s_{r}(t)=\int_{x} \int_{y} m(x, y) e^{-j \omega_{o} t} \exp \left(-j \gamma \int_{o}^{t} \vec{G}(\tau) \cdot \vec{r} d \tau\right) d x d y
$$

TT. Liu, BE280A, UCSD Fall 2014

MR signal is Fourier Transform

$s(t)=\int_{x} \int_{y} m(x, y) \exp \left(-j 2 \pi\left(k_{x}(t) x+k_{y}(t) y\right)\right) d x d y$
$=M\left(k_{x}(t), k_{y}(t)\right)$
$=F[m(x, y)]_{k_{x}(t), k_{y}(t)}$

TT. Liu, BE280A, UCSD Fall 2014

Recap

- Frequency $=$ rate of change of phase.
- Higher magnetic field -> higher Larmor frequency -> phase changes more rapidly with time.
- With a constant gradient G_{x}, spins at different x locations precess at different frequencies -> spins at greater x -values change phase more rapidly.
- With a constant gradient, distribution of phases across x locations changes with time. (phase modulation)
- More rapid change of phase with $x->$ higher spatial frequency k_{x}

TT. Liu, BE280A, UCSD Fall 2014

K-space trajectory

$k_{x}(t)=\frac{\gamma}{2 \pi} \int_{0}^{t} G_{x}(\tau) d \tau$
T. Liu, BE280A, UCSD Fall 2014

K-space

At each point in time, the received signal is the Fourier transform of the object

$$
s(t)=M\left(k_{x}(t), k_{y}(t)\right)=F[m(x, y)]_{k_{x}(t), k_{y}(t)}
$$

evaluated at the spatial frequencies:

$$
\begin{aligned}
& k_{x}(t)=\frac{\gamma}{2 \pi} \int_{0}^{t} G_{x}(\tau) d \tau \\
& k_{y}(t)=\frac{\gamma}{2 \pi} \int_{0}^{t} G_{y}(\tau) d \tau
\end{aligned}
$$

Thus, the gradients control our position in k-space. The design of an MRI pulse sequence requires us to efficiently cover enough of k-space to form our image

TT. Liu, BE280A, UCSD Fall 2014

Units

Spatial frequencies $\left(k_{x}, k_{y}\right)$ have units of $1 /$ distance. Most commonly, $1 / \mathrm{cm}$

Gradient strengths have units of (magnetic field)/ distance. Most commonly G / cm or mT / m
$\gamma /(2 \pi)$ has units of Hz / G or $\mathrm{Hz} /$ Tesla.

$$
k_{x}(t)=\frac{\gamma}{2 \pi} \int_{0}^{t} G_{x}(\tau) d \tau
$$

$$
=[\mathrm{Hz} / \text { Gauss }][\text { Gauss } / \mathrm{cm}][\mathrm{sec}]
$$

$$
=[1 / \mathrm{cm}]
$$

TT. Liu, BE280A, UCSD Fall 2014

[^0]: TT. Liu, BE280A, UCSD Fall 2014

