

K-space

At each point in time, the received signal is the Fourier transform of the object

$$
\left.s(t)=M\left(k_{x}(t), k_{y}(t)\right)=F[m(x, y)]\right]_{k_{x}(t), k_{y}(t)}
$$

evaluated at the spatial frequencies:

$$
\begin{aligned}
& k_{x}(t)=\frac{\gamma}{2 \pi} \int_{0}^{t} G_{x}(\tau) d \tau \\
& k_{y}(t)=\frac{\gamma}{2 \pi} \int_{0}^{t} G_{y}(\tau) d \tau
\end{aligned}
$$

Thus, the gradients control our position in k-space. The design of an MRI pulse sequence requires us to efficiently cover enough of k-space to form our image.

TT. Liu, BE280A, UCSD Fall 2014

Example	
Phase-Encode Gradient : $\begin{aligned} \delta_{y}=\frac{1}{\frac{\gamma}{2 \pi} 2 G_{y p} \tau_{y}} \end{aligned} \begin{aligned} G_{y p}=\frac{1}{\delta_{y} 2 \frac{\gamma}{2 \pi} \tau_{y}} & =\frac{1}{(0.1 \mathrm{~cm})\left(4257 G^{-1} s^{-1}\right)\left(4.096 \times 10^{-3} s\right)} \\ & =0.2868 \mathrm{G} / \mathrm{cm} \\ & =\frac{\mathrm{N}_{\mathrm{p}}}{2} G_{y i} \end{aligned}$ $\mathrm{N}_{\mathrm{p}}=\frac{F O V_{y}}{\delta_{\mathrm{y}}}=256$	$\mathrm{G}_{\mathrm{y}}(\mathrm{t})$

Free Induction Decay (FID)

http://www.easymeasure.co.uk/principlesmri.aspx
TT. Liu, BE280A, UCSD Fall 2014
(

Longitudinal Relaxation

Due to exchange of energy between nuclei and the lattice (thermal vibrations). Process continues until thermal equilibrium as determined by Boltzmann statistics is obtained.

The energy $\Delta \mathrm{E}$ required for transitions between down to up spins, increases with field strength, so that T_{1} increases with \mathbf{B}.

Relaxation

An excitation pulse rotates the magnetization vector away from its equilibrium state (purely longitudinal). The resulting vector has both longitudinal $\mathbf{M}_{\mathbf{z}}$ and tranverse $\mathbf{M}_{\mathbf{x y}}$ components.

Due to thermal interactions, the magnetization will return to its equilibrium state with characteristic time constants.
T_{1} spin-lattice time constant, return to equilibrium of $\mathbf{M}_{\mathbf{z}}$
T_{2} spin-spin time constant, return to equilibrium of \mathbf{M}_{xy}

TT. Liu, BE280A, UCSD Fall 2014

Transverse Relaxation

$$
\frac{d \mathbf{M}_{x y}}{d t}=-\frac{M_{x y}}{T_{2}} \overbrace{\mathrm{x}}^{\mathrm{z}} \overbrace{\mathrm{yx}}^{\mathrm{z}} \underbrace{\mathrm{z}}_{\mathrm{y}}
$$

Each spin's local field is affected by the z-component of the field due to other spins. Thus, the Larmor frequency of each spin will be slightly different. This leads to a dephasing of the transverse magnetization, which is characterized by an exponential decay.
T_{2} is largely independent of field. T_{2} is short for low frequency fluctuations, such as those associated with slowly tumbling macromolecules.

TT. Liu, BEE28A, UCSSD Fall 2014

T2 Relaxation

Free Induction Decay (FID)

$\begin{aligned} & \text { After a } 90 \text { degree } \\ & \text { excitation }\end{aligned} \quad M_{x y}(t)=M_{0} e^{-t / T_{2}}$
excitation

TT. Liu, BE280A, UCSD Fall 2014

TT. Liu, BE280A, UCSD Fall 2014

Bloch Equation

$$
\frac{d \mathbf{M}}{d t}=\underbrace{\mathbf{M} \times \gamma \mathbf{B}}_{\text {Precession }}-\frac{M_{\substack{\text { Transverse } \\ \text { Relaxation }}}^{\frac{M_{x} \mathbf{i}+M_{y} \mathbf{j}}{T_{2}}}-\frac{\left(M_{z}-M_{0}\right) \mathbf{k}}{T_{\substack{\text { Longitudinal } \\ \text { Relaxation }}}^{T_{1}}} \underbrace{\underbrace{}_{\substack{ }}}, \frac{M_{2}}{}}{\underbrace{2}}
$$

$\mathbf{i}, \mathbf{j}, \mathbf{k}$ are unit vectors in the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ directions.

$$
\begin{gathered}
\text { Precession } \\
{\left[\begin{array}{l}
d M_{z} / d t \\
d y_{y} / d t \\
d M_{z} / d t
\end{array}\right]=\gamma\left[\begin{array}{ccc}
0 & B_{0} & 0 \\
B_{0} & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
M_{z} \\
M_{y} \\
M_{z}
\end{array}\right]}
\end{gathered}
$$

Useful to define

$$
d M / d t=d / d t\left(M_{x}+i M_{y}\right)
$$

$$
=-j \gamma B_{0} M
$$

Solution is a time-varying phasor

$$
M(t)=M(0) e^{-j \gamma B_{0} t}=M(0) e^{-j \omega_{0} t}
$$

TT. Liu, BE280A, UCSD Fall 2014
Question: which way does this rotate with time?

$$
-10+0
$$

Z-component solution

$$
M_{z}(t)=M_{0}+\left(M_{z}(0)-M_{0}\right) e^{-t / T_{1}}
$$

Saturation Recovery
If $M_{z}(0)=0$ then $M_{z}(t)=M_{0}\left(1-e^{-t / T_{1}}\right)$

Inversion Recovery
If $M_{z}(0)=-M_{0}$ then $M_{z}(t)=M_{0}\left(1-2 e^{-t / T_{1}}\right)$

TT. Liu, BE280A, UCSD Fall 2014

Summary

1) Longitudinal component recovers exponentially.
2) Transverse component precesses and decays exponentially.

Source: http://mrsrl.stanford.edu/~brian/mri-movies/

Transverse Component

$M \equiv M_{x}+j M_{y}$
$d M / d t=d / d t\left(M_{x}+i M_{y}\right)$
$=-j\left(\omega_{0}+1 / T_{2}\right) M$
$M(t)=M(0) e^{-j \omega_{0} t} e^{-t / T_{2}}$

TT. Liu, BE280A, UCSD Fall 2014

Summary

1) Longitudinal component recovers exponentially.
2) Transverse component precesses and decays exponentially.

Fact: Can show that $T_{2}<T_{1}$ in order for $|M(t)| \leq M_{0}$
Physically, the mechanisms that give rise to T_{1} relaxation also contribute to transverse T_{2} relaxation.
TT. Liu, BE280, U UCSD Fall 2014

Static Inhomogeneities

In the ideal situation, the static magnetic field is totally uniform and the reconstructed object is determined solely by the applied gradient fields. In reality, the magnet is not perfect and will not be totally uniform. Part of this can be addressed by additional coils called "shim" coils, and the process of making the field more uniform is called "shimming". In the old days this was done manually, but modern magnets can do this automatically.

In addition to magnet imperfections, most biological samples are inhomogeneous and this will lead to inhomogeneity in the field. This is because, each tissue has different magnetic properties and will distort the field.

TT. Liu, BE280A, UCSD Fall 2014

Static Inhomogeneities

The spatial nonuniformity in the field can be modeled by adding an additional term to our signal equation.

$$
\begin{aligned}
s_{r}(t) & =\int_{V} M(\vec{r}, t) d V \\
& =\int_{x} \int_{y} \int_{z} M(x, y, z, 0) e^{-t / T_{2}(\vec{r} \vec{r}} e^{-j \omega_{0} t^{-j j \omega_{F}(\vec{r}) t} \exp \left(-j \gamma \int_{o}^{t} \vec{G}(\tau) \cdot \vec{r} d \tau\right) d x d y d z}
\end{aligned}
$$

The effect of this nonuniformity is to cause the spins to dephase with time and thus for the signal to decrease more rapidly. To first order this can be modeled as an additional decay term of the form

$$
s_{r}(t)=\int_{x} \int_{y} \int_{z} M(x, y, z, 0) e^{-t / T_{2}(\vec{r})} e^{-t / T_{2}^{\prime}(\vec{r})} e^{-j \omega_{0} t} \exp \left(-j \gamma \int_{o}^{t} \vec{G}(\tau) \cdot \vec{r} d \tau\right) d x d y d z
$$

$\mathrm{T}_{2}{ }^{*}$ decay

The overall decay has the form.

$$
\exp \left(-t / T_{2}^{*}(\vec{r})\right)
$$

where

$$
\text { where } \frac{1}{T_{2}^{*}}=\frac{1}{T_{2}}+\frac{1}{T_{2}^{\prime}}
$$

Due to random motions of spins.
Not reversible.
Due to static inhomogeneities. Reversible with a spin-echo sequence.

TT. Liu, BE280A, UCSD Fall 2014

Spin Echo

Discovered by Erwin Hahn in 1950.

The spin-echo can refocus the dephasing of spins due to static inhomogeneities. However, there will still be T_{2} dephasing due to random motion of spins.

There is nothing that nuclear spins will not do for you, as long as you treat them as human beings. Erwin Hahn TT. Liu, BE280A, UCSD Fall 2014 Image: Larry Frank

Spin Echo

Source: http://mrsrl.stanford.edu/~brian/mri-movies/

TT. Liu, BE280A, UCSD Fall 201

Image Contrast

Different tissues exhibit different relaxation rates, $\mathrm{T}_{1}, \mathrm{~T}_{2}$, and $\mathrm{T}_{2}{ }^{*}$. In addition different tissues can have different densities of protons. By adjusting the pulse sequence, we can create contrast between the tissues. The most basic way of creating contrast is adjusting the two sequence parameters: TE (echo time) and TR (repetition time).

Saturation Recovery Sequence

$$
I(x, y)=\rho(x, y)\left[1-e^{-T R / T_{1}(x, y)}\right] e^{-T E / T_{2}^{*}(x, y)}
$$

TT. Liu, BE280A, UCSD Fall 2014

T1-Weighted Scans

TT. Liu, BE280A, UCSD Fall 2014

T1-Weighted Scans

Make TE very short compared to either T_{2} or $\mathrm{T}_{2}{ }^{*}$. The resultant image has both proton and T_{1} weighting.

$$
I(x, y) \approx \rho(x, y)\left[1-e^{-T R / T_{1}(x, y)}\right]
$$

TT. Liu, BE280A, UCSD Fall 2014

T2-Weighted Scans

Make TR very long compared to T_{1} and use a spin-echo pulse sequence. The resultant image has both proton and T_{2} weighting.

$$
I(x, y) \approx \rho(x, y) e^{-T E / T_{2}}
$$

TT. Liu, BE280A, UCSD Fall 2014

Proton Density Weighted Scans

Make TR very long compared to T_{1} and use a very short TE. The resultant image is proton density weighted.

$$
I(x, y) \approx \rho(x, y)
$$

TT. Liu, BE280A, UCSD Fall 2014

(a) Four images, all obtained with a common $\mathrm{TR}=5$ seconds and TE=90, 50, 20, 15 ms (shown in reading order). Figure 8: Phan Figure 8: Phantom data which illustrates signal intensity and contrast for botles filled with jello af varying
consistency. Where is T_{1} long shor? How long, how shor? The same oro T_{2} ? Which bottles might be pure consistency. Where is T_{1} longs/shor? How long, how short? The same for T_{2} ? ? Which bottles might be pure
water? Which jello is most firm? What pictures are the most T_{1}, T_{2} - and PD-weighted?
Hanson 2009
a) Which is the most T 1 weighted?
b) Which is the most T 2 weighted?
c) Which is the most PD weighted?

PollEv.com/be280a
tT. Liu, BE280A, UCSD Fall 2014

(b) Six images obtained with a common $\mathrm{TE}=15 \mathrm{~ms}$ and TR=500, 1000, 2000, 3000, 4000, 5000 ms shown in reading order)

FLASH sequence

TR
Gradient Echo
Gradient Echo $\frac{\left[1-e^{-T R / T_{1}(x, y)}\right] \sin \theta}{I(x, y)=\rho(x, y) \frac{1}{\left[1-e^{-T R / T_{1}(x, y)} \cos \theta\right]} \exp \left(-T E / T_{2}^{*}\right)}$
Signal intensity is maximized at the Ernst Angle

$$
\theta_{E}=\cos ^{-1}\left(\exp \left(-T R / T_{1}\right)\right)
$$

FLASH equation assumes no coherence from shot to shot. In practice this is achieved with RF spoiling.

TT. Liu, BE280A, UCSD Fall 2014

$$
I(x, y)=\rho(x, y)\left[1-2 e^{-T I / T_{1}(x, y)}+e^{-T R / T_{1}(x, y)}\right] e^{-T E / T_{2}(x, y)}
$$

Intensity is zero when inversion time is

$$
T I=-T_{1} \ln \left[\frac{1+\exp \left(-T R / T_{1}\right)}{2}\right]
$$

TT. Liu, BE280A, UCSD Fall 2014

