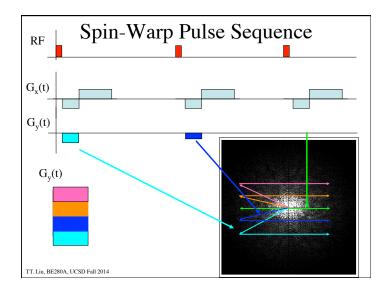
Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2014 MRI Lecture 4



K-space

At each point in time, the received signal is the Fourier transform of the object

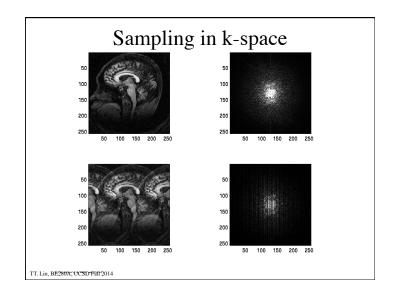
$$s(t) = M(k_x(t), k_y(t)) = F[m(x, y)]_{k_x(t), k_y(t)}$$

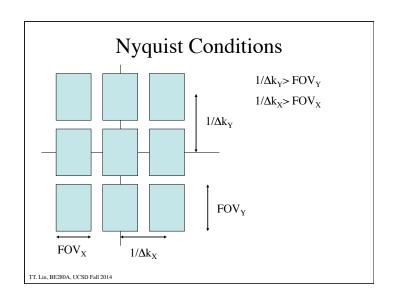
evaluated at the spatial frequencies:

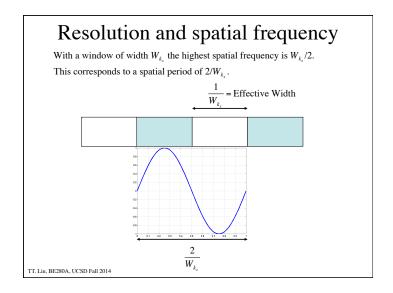
$$k_{x}(t) = \frac{\gamma}{2\pi} \int_{0}^{t} G_{x}(\tau) d\tau$$

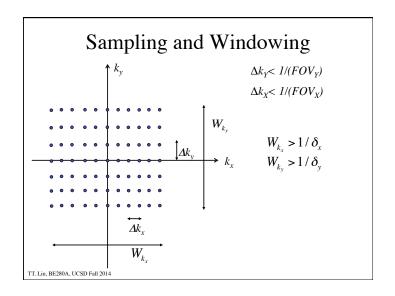
$$k_{y}(t) = \frac{\gamma}{2\pi} \int_{0}^{t} G_{y}(\tau) d\tau$$

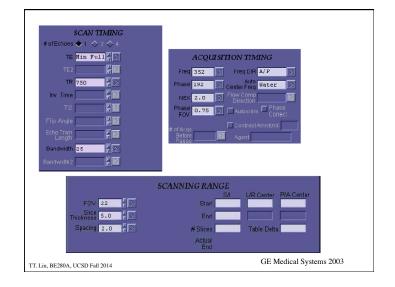
Thus, the gradients control our position in k-space. The design of an MRI pulse sequence requires us to efficiently cover enough of k-space to form our image.











Example

Goal:

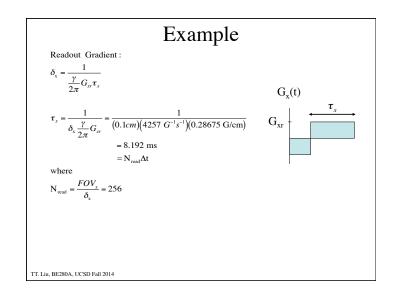
$$FOV_x = FOV_y = 25.6 \text{ cm}$$
 $\delta_x = \delta_y = 0.1 \text{ cm}$

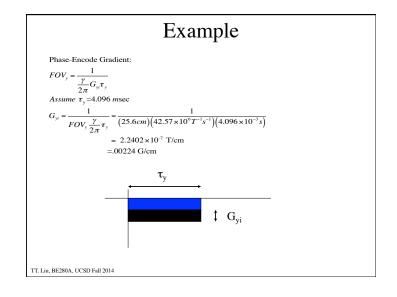
Readout Gradient:

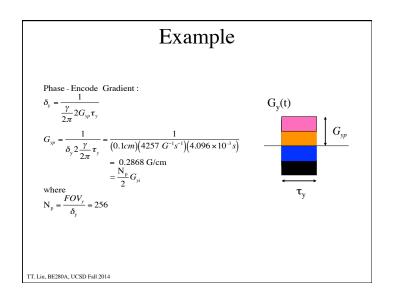
 $FOV_x = \frac{1}{2\pi}G_x\Delta t$

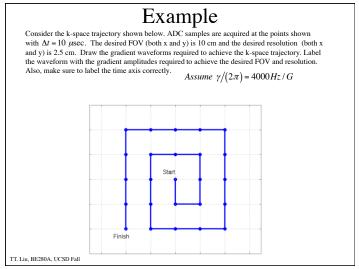
ASSUME $\Delta t = 32 \mu \text{sec}$
 $G_{xr} = \frac{1}{FOV_x \frac{\gamma}{2\pi}\Delta t} = \frac{1}{(25.6cm)(42.57 \times 10^{\circ} T^{-1} s^{-1})(32 \times 10^{-6} s)}$
 $= 2.8675 \times 10^{-5} \text{ T/cm}$
 $= .28675 \text{ G/cm}$

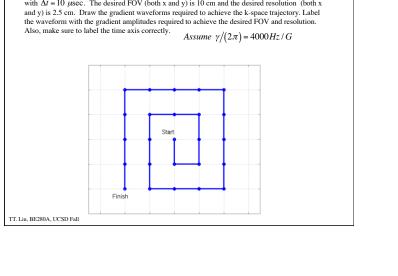
1 Gauss = 1×10^{-4} Tesla

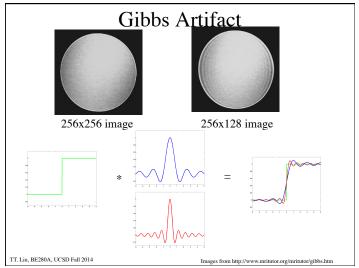


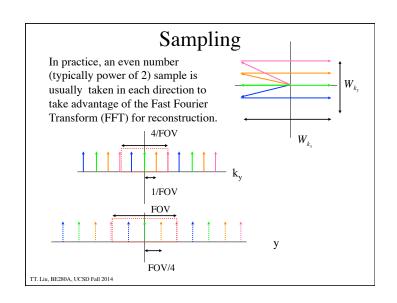


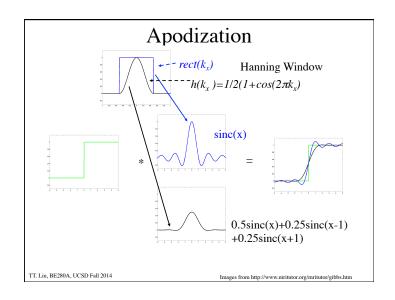


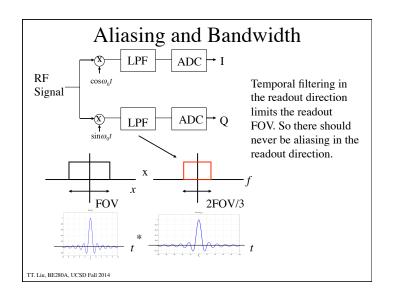


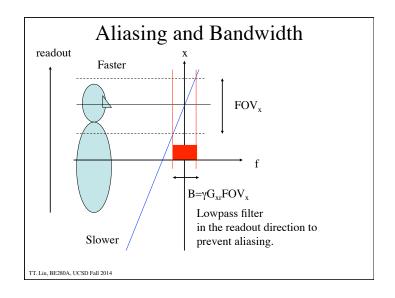


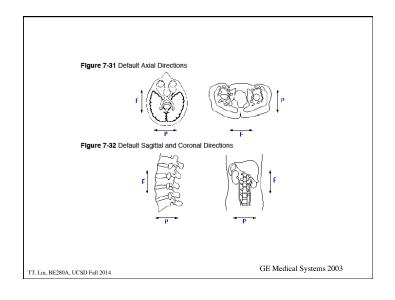


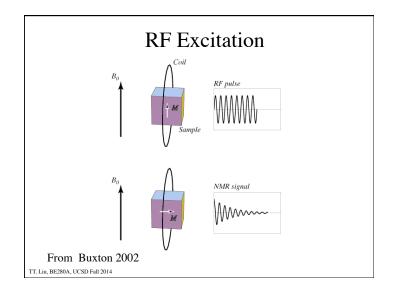


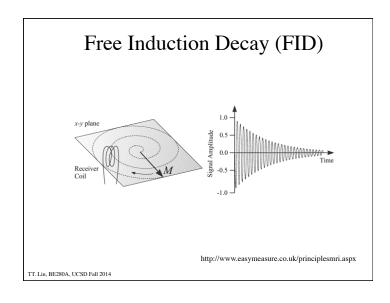












Longitudinal Relaxation

$$\frac{d\mathbf{M}_z}{dt} = -\frac{M_z - M_z}{T_1}$$

To the state of th

After a 90 degree pulse

 $M_z(t) = M_0(1 - e^{-t/T_1})$

Due to exchange of energy between nuclei and the lattice (thermal vibrations). Process continues until thermal equilibrium as determined by Boltzmann statistics is obtained.

The energy ΔE required for transitions between down to up spins, increases with field strength, so that T_1 increases with **B**.

TT. Liu, BE280A, UCSD Fall 2014

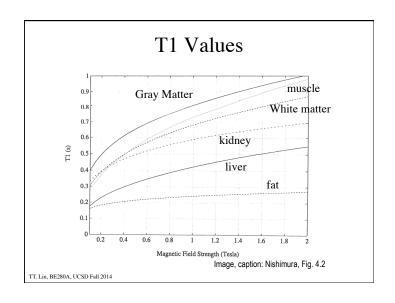
Relaxation

An excitation pulse rotates the magnetization vector away from its equilibrium state (purely longitudinal). The resulting vector has both longitudinal $\mathbf{M}_{\mathbf{v}}$ and tranverse $\mathbf{M}_{\mathbf{v}\mathbf{v}}$ components.

Due to thermal interactions, the magnetization will return to its equilibrium state with characteristic time constants.

 T_1 spin-lattice time constant, return to equilibrium of M_z

 T_2 spin-spin time constant, return to equilibrium of M_{xy}



Transverse Relaxation

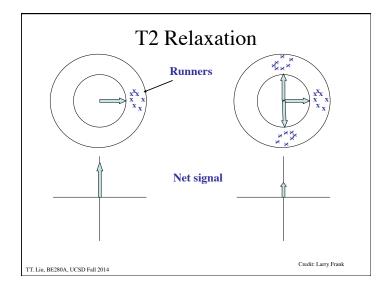
$$\frac{d\mathbf{M}_{xy}}{dt} = -\frac{M_{xy}}{T_2}$$

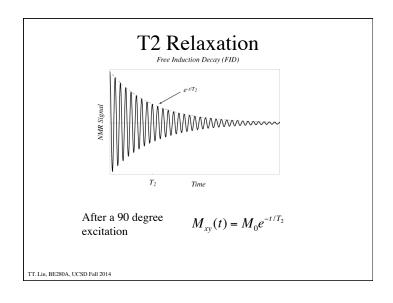
$$\mathbf{y} \mathbf{x}$$

Each spin's local field is affected by the z-component of the field due to other spins. Thus, the Larmor frequency of each spin will be slightly different. This leads to a dephasing of the transverse magnetization, which is characterized by an exponential decay.

 T_2 is largely independent of field. T_2 is short for low frequency fluctuations, such as those associated with slowly tumbling macromolecules.

TT. Liu. BE280A, UCSD Fall 2014





-	T 7	
′ 1 ″)	\/ o	11120
12	va	iues

Tissue	T ₂ (ms)
gray matter	100
white matter	92
muscle	47
fat	85
kidney	58
liver	43
CSF	4000

rabla 40 -

Table: adapted from Nishimura, Table 4.2

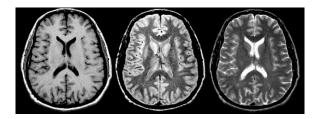
TT. Liu, BE280A, UCSD Fall 2014

Solids exhibit very short T₂ relaxation times because there are many low frequency interactions between the immobile spins.

On the other hand, liquids show relatively long T_2 values, because the spins are highly mobile and net fields

average out.

Example



T₁-weighted

Density-weighted

T₂-weighted

Questions: How can one achieve T2 weighting? What are the relative T2's of the various tissues?

TT. Liu, BE280A, UCSD Fall 2014

Precession

$$\begin{bmatrix} dM_x/dt \\ dM_y/dt \\ dM_z/dt \end{bmatrix} = \gamma \begin{bmatrix} 0 & B_0 & 0 \\ -B_0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} M_x \\ M_y \\ M_z \end{bmatrix}$$

Useful to define $M = M_x + jM_y$

$$dM/dt = d/dt(M_x + iM_y)$$
$$= -j\gamma B_0 M$$

Solution is a time-varying phasor

$$M(t) = M(0)e^{-j\gamma B_0 t} = M(0)e^{-j\omega_0 t}$$

Question: which way does this rotate with time?

TT. Liu, BE280A, UCSD Fall 2014

Bloch Equation

$$\frac{d\mathbf{M}}{dt} = \mathbf{M} \times \gamma \mathbf{B} - \frac{M_x \mathbf{i} + M_y \mathbf{j}}{T_2} - \frac{(M_z - M_0) \mathbf{k}}{T_1}$$
Precession

Transverse Relaxation

Relaxation

i, j, k are unit vectors in the x,y,z directions.

TT. Liu, BE280A, UCSD Fall 2014

Matrix Form with B=B₀

$$\begin{bmatrix} dM_x/dt \\ dM_y/dt \\ dM_z/dt \end{bmatrix} = \begin{bmatrix} -1/T_2 & \gamma B_0 & 0 \\ -\gamma B_0 & 1/T_2 & 0 \\ 0 & 0 & -1/T_1 \end{bmatrix} \begin{bmatrix} M_x \\ M_y \\ M_z \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ M_0/T_1 \end{bmatrix}$$

Z-component solution

$$M_z(t) = M_0 + (M_z(0) - M_0)e^{-t/T_1}$$

Saturation Recovery

If
$$M_z(0) = 0$$
 then $M_z(t) = M_0(1 - e^{-t/T_1})$

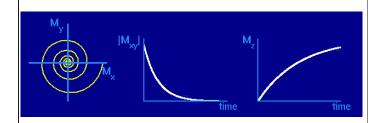
Inversion Recovery

If
$$M_z(0) = -M_0$$
 then $M_z(t) = M_0(1 - 2e^{-t/T_1})$

TT. Liu, BE280A, UCSD Fall 2014

Summary

- 1) Longitudinal component recovers exponentially.
- 2) Transverse component precesses and decays exponentially.



Source: http://mrsrl.stanford.edu/~brian/mri-movies/

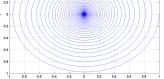
TT. Liu, BE280A, UCSD Fall 2014

Transverse Component

 $M \equiv M_x + jM_y$

$$dM/dt = d/dt(M_x + iM_y)$$
$$= -j(\omega_0 + 1/T_2)M$$

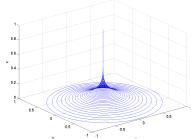
$$M(t) = M(0)e^{-j\omega_0 t}e^{-t/T_2}$$



TT. Liu, BE280A, UCSD Fall 2014

Summary

- 1) Longitudinal component recovers exponentially.
- 2) Transverse component precesses and decays exponentially.



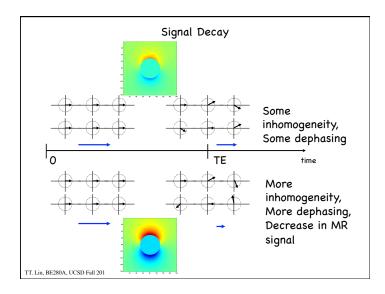
Fact: Can show that $T_2 < T_1$ in order for $|M(t)| \le M_0$ Physically, the mechanisms that give rise to T_1 relaxation also contribute to transverse T_2 relaxation.

Static Inhomogeneities

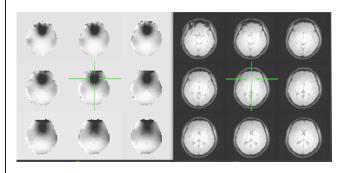
In the ideal situation, the static magnetic field is totally uniform and the reconstructed object is determined solely by the applied gradient fields. In reality, the magnet is not perfect and will not be totally uniform. Part of this can be addressed by additional coils called "shim" coils, and the process of making the field more uniform is called "shimming". In the old days this was done manually, but modern magnets can do this automatically.

In addition to magnet imperfections, most biological samples are inhomogeneous and this will lead to inhomogeneity in the field. This is because, each tissue has different magnetic properties and will distort the field.

TT. Liu, BE280A, UCSD Fall 2014



Field Inhomogeneities



TT. Liu, BE280A, UCSD Fall 2014

Static Inhomogeneities

The spatial nonuniformity in the field can be modeled by adding an additional term to our signal equation.

$$\begin{split} s_r(t) &= \int_V M(\vec{r},t) dV \\ &= \int_x \int_y \int_z M(x,y,z,0) e^{-t/T_2(\vec{r})} e^{-j\omega_0 t} e^{-j\omega_E(\vec{r})t} \exp\left(-j\gamma \int_0^t \vec{G}(\tau) \cdot \vec{r} d\tau\right) dx dy dz \end{split}$$

The effect of this nonuniformity is to cause the spins to dephase with time and thus for the signal to decrease more rapidly. To first order this can be modeled as an additional decay term of the form

$$s_r(t) = \int_x \int_y \int_z M(x, y, z, 0) e^{-t/T_2(\vec{r})} e^{-t/T_2(\vec{r})} e^{-j\omega_0 t} \exp\left(-j\gamma \int_o^t \vec{G}(\tau) \cdot \vec{r} d\tau\right) dx dy dz$$

The overall decay has the form.

$$\exp(-t/T_2^*(\vec{r}))$$

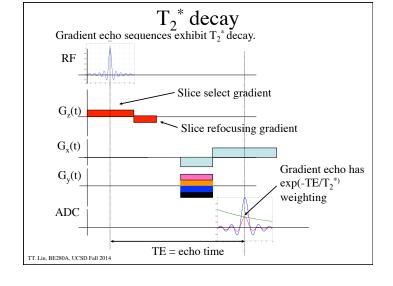
where

$$\frac{1}{T_2^*} = \frac{1}{T_2} + \frac{1}{T_2'}$$

Due to random motions of spins. Not reversible.

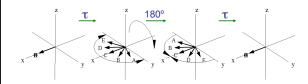
Due to static inhomogeneities. Reversible with a spin-echo sequence.

TT. Liu, BE280A, UCSD Fall 2014



Spin Echo

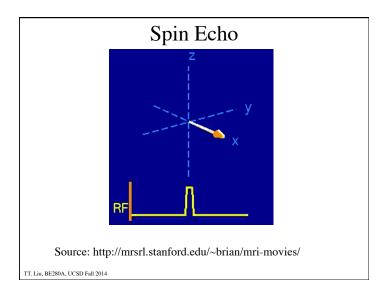
Discovered by Erwin Hahn in 1950.



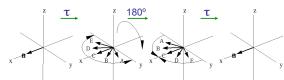
The spin-echo can refocus the dephasing of spins due to static inhomogeneities. However, there will still be T₂ dephasing due to random motion of spins.

There is nothing that nuclear spins will not do for you, as long as you treat them as human beings. Erwin Hahn

Image: Larry Frank TT. Liu, BE280A, UCSD Fall 2014



Spin Echo



Phase at time τ

$$\varphi(\tau) = \int_0^{\tau} -\omega_E(\vec{r}) dt = -\omega_E(\vec{r}) \tau$$

Phase after 180 pulse

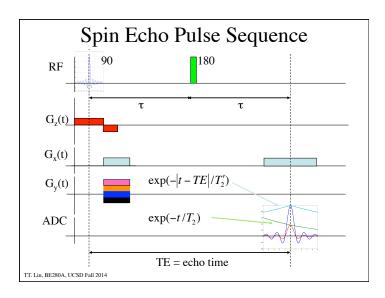
$$\varphi(\tau^+) = \omega_E(\vec{r})\tau$$

Phase at time 2τ

$$\varphi(2\tau) = -\omega_E(\vec{r})\tau + \omega_E(\vec{r})\tau = 0$$

TT. Liu, BE280A, UCSD Fall 2014

Image: Larry Frank



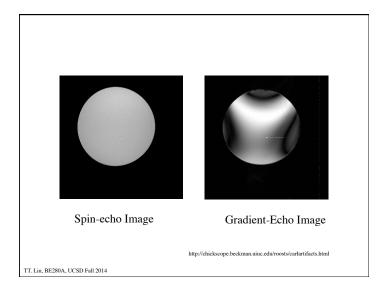
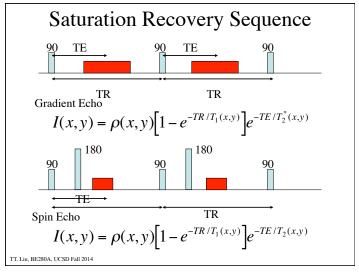
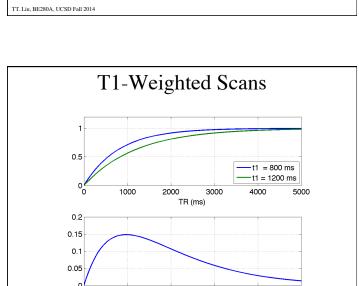


Image Contrast

Different tissues exhibit different relaxation rates, T_1 , T_2 , and ${T_2}^*$. In addition different tissues can have different densities of protons. By adjusting the pulse sequence, we can create contrast between the tissues. The most basic way of creating contrast is adjusting the two sequence parameters: TE (echo time) and TR (repetition time).





2000

TR (ms)

4000

5000

1000

TT. Liu, BE280A, UCSD Fall 2014

T1-Weighted Scans

Make TE very short compared to either T_2 or ${T_2}^*$. The resultant image has both proton and T_1 weighting.

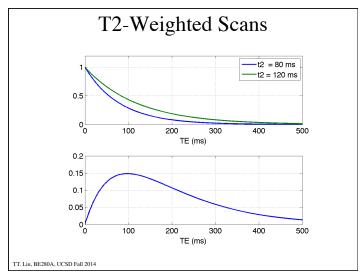
$$I(x,y) \approx \rho(x,y) \left[1 - e^{-TR/T_1(x,y)} \right]$$

TT. Liu, BE280A, UCSD Fall 2014

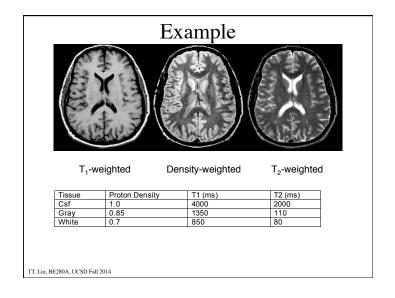
T2-Weighted Scans

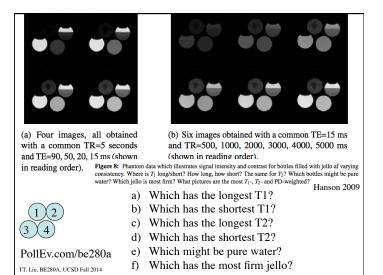
Make TR very long compared to T_1 and use a spin-echo pulse sequence. The resultant image has both proton and T_2 weighting.

$$I(x,y) \approx \rho(x,y)e^{-TE/T_2}$$



TT. Liu, BE280A, UCSD Fall 2014



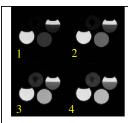


Proton Density Weighted Scans

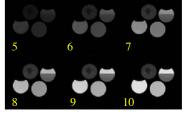
Make TR very long compared to T₁ and use a very short TE. The

 $I(x,y) \approx \rho(x,y)$

resultant image is proton density weighted.



(a) Four images, all obtained with a common TR=5 seconds and TE=90, 50, 20, 15 ms (shown



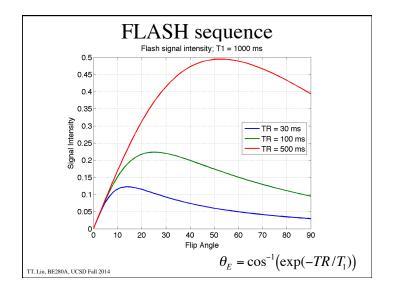
(b) Six images obtained with a common TE=15 ms and TR=500, 1000, 2000, 3000, 4000, 5000 ms (shown in reading order).

in reading order). Figure 8: Phantom data which illustrates signal intensity and contrast for bottles filled with jello af varying consistency. Where is 7; long/short? How long, how short? The same for 7;? Which bottles might be pure water? Which jello is most firm? What pictures are the most 17, 17, 2 and PD-weighted?

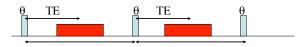
- a) Which is the most T1 weighted?
- b) Which is the most T2 weighted?
- c) Which is the most PD weighted?

PollEv.com/be280a

TT. Liu, BE280A, UCSD Fall 2014



FLASH sequence



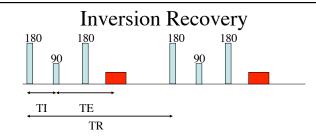
Gradient Echo TR $I(x,y) = \rho(x,y) \frac{\left[1 - e^{-TR/T_1(x,y)}\right] \sin \theta}{\left[1 - e^{-TR/T_1(x,y)}\cos \theta\right]} \exp(-TE/T_2^*)$

Signal intensity is maximized at the Ernst Angle

$$\theta_E = \cos^{-1}(\exp(-TR/T_1))$$

FLASH equation assumes no coherence from shot to shot. In practice this is achieved with RF spoiling.

TT. Liu, BE280A, UCSD Fall 2014



$$I(x,y) = \rho(x,y) \left[1 - 2e^{-TT/T_1(x,y)} + e^{-TR/T_1(x,y)} \right] e^{-TE/T_2(x,y)}$$

Intensity is zero when inversion time is

$$TI = -T_1 \ln \left[\frac{1 + \exp(-TR/T_1)}{2} \right]$$

