

Proton Density Weighted Scans Make TR very long compared to T₁ and use a very short TE. The resultant image is proton density weighted. $I(x,y) \approx \rho(x,y)$

Rotating Frame Bloch Equation $\frac{d\mathbf{M}_{rot}}{dt} = \mathbf{M}_{rot} \times \gamma \mathbf{B}_{eff}$ $\mathbf{B}_{eff} = \mathbf{B}_{rot} + \frac{\omega_{rot}}{\gamma}; \quad \omega_{rot} = \begin{bmatrix} 0\\0\\-\omega \end{bmatrix}$ Note: we use the RE fractionary to define the rotating frame. If

Note: we use the RF frequency to define the rotating frame. If this RF frequency is on-resonance, then the main B0 field doesn't cause any precession in the rotating frame. However, if the RF frequency is off-resonance, then there will be a net precession in the rotating frame that is give by the difference between the RF frequency and the local Larmor frequency.

TT. Liu, BE280A, UCSD Fall 2014

Let $\mathbf{B}_{rot} = B_1(t)\mathbf{i} + B_0\mathbf{k}$ $\mathbf{B}_{eff} = \mathbf{B}_{rot} + \frac{\omega_{rot}}{\gamma}$ $= B_1(t)\mathbf{i} + \left(B_0 - \frac{\omega}{\gamma}\right)\mathbf{k}$ If $\omega = \omega_0$ $= \gamma B_0$ Then $\mathbf{B}_{eff} = B_1(t)\mathbf{i}$ TT Law, BE280A, UCSD Fall 2014

	Excitation k-space
	Integrating over all time increments, we obtain
	$M_{xy}(t,z) = jM_0 \int_{-\infty}^{t} \gamma B_1(\tau) \exp\left(-j\gamma \int_{\tau}^{t} z G_z(s) ds\right) d\tau$
	$= jM_0 \int_{-\infty}^{t} \gamma B_1(\tau) \exp(-j2\pi k(\tau,t)z) d\tau$
	where $k(\tau, t) = \frac{\gamma}{2\pi} \int_{\tau}^{t} G_z(s) ds$
This has	the form of a Fourier transform, where we are
integratio	ng the contributions of the field $B_1(\tau)$ at the k-space point $k(\tau,t)$.
IT. Liu, BE280A,	UCSD Fall 2014

