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Topics
1. Linearity
2. Impulse Response and Delta functions
3. Superposition Integral
4. Shift Invariance
5. 1D and 2D convolution
6. Signal Representations
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Signals and Images
Discrete-time/space signal/image: continuous valued
function with a discrete time/space index, denoted as
s[n] for 1D, s[m,n] for 2D , etc.

Continuous-time/space signal/image: continuous
valued function with a continuous time/space index,
denoted as s(t) or s(x) for 1D, s(x,y) for 2D, etc.
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Linearity (Addition)

I1(x,y) R(I) K1(x,y)

I2(x,y) R(I) K2(x,y)

I1(x,y)+  I2(x,y)
R(I)

K1(x,y) +K2(x,y)
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Linearity (Scaling)

I1(x,y) R(I) K1(x,y)

a1I1(x,y) R(I) a1K1(x,y)
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Linearity
A system R is linear if for two inputs
 I1(x,y) and I2(x,y) with outputs

R(I1(x,y))=K1(x,y) and R(I2(x,y))=K2(x,y)

the response to the weighted sum of inputs is the
weighted sum of outputs:

R(a1I1(x,y)+ a2I 2(x,y))=a1K1(x,y)+ a2K2(x,y)
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Example
Are these linear systems? 

g(x,y)                       g(x,y)+10+

10

g(x,y)                      10g(x,y)X

10

g(x,y) Move up
By 1

Move right
By 1

g(x-1,y-1)
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Rectangle Function

€ 

 Π(x) =
0 x >1/2
1 x ≤1/2
 
 
 

 

-1/2             1/2

1

-1/2                        1/2

1/2

x

-1/2

x

y
Also called rect(x)

€ 

Π(x,y) =  Π(x)Π(y)
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Kronecker Delta Function

€ 

δ[n]  =
1 for n = 0
0 otherwise
 
 
 

n

δ[n]

n

δ[n-2]
0

0
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Kronecker Delta Function

€ 

δ[m,n]  =
1 for m = 0,n = 0
0 otherwise
 
 
 

δ[m,n] δ[m-2,n]

δ[m,n-2] δ[m-2,n-2]



6

Thomas Liu, BE280B, UCSD, Spring 2005

Discrete Signal Expansion

€ 

g[n] = g[k]δ[n − k]
k=−∞

∞

∑

g[m,n] =
l=−∞

∞

∑ g[k,l]δ[m − k,n − l]
k=−∞

∞

∑

n

δ[n]

n

1.5δ[n-2]

0

n

-δ[n-1]

0

0

n

g[n]

n
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Dirac Delta Function

  

€ 

Notation :  
δ(x)  -   1D Dirac Delta Function
δ(x, y) or 2δ(x, y)  -  2D Dirac Delta Function
δ(x, y,z) or 3δ(x,y,z) -  3D Dirac Delta Function
δ(r r ) -  N Dimensional Dirac Delta Function
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1D Dirac Delta Function

€ 

δ(x)  =  0 when x ≠ 0  and δ(x)dx =1
−∞

∞

∫
Can interpret the integral as a limit of the integral of an ordinary function 
that is shrinking in width and growing in height, while maintaining a
constant area. For example, we can use a shrinking rectangle function

 such that δ(x)dx =
−∞

∞

∫ lim
τ→0

τ−1Π(x /τ )dx
−∞

∞

∫ .

-1/2         1/2

1

x

τ→0
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2D Dirac Delta Function

€ 

δ(x,y) =  0 when x 2 + y 2 ≠ 0 and δ(x,y)dxdy =1
−∞

∞

∫
−∞

∞

∫
where we can consider the limit of the integral of an ordinary  2D function
that is shrinking in width but increasing in height while maintaining constant area.

δ(x,y)dxdy =
−∞

∞

∫
−∞

∞

∫ lim
τ→0

τ−2Π x /τ,y /τ( )dxdy
−∞

∞

∫
−∞

∞

∫ .

Useful fact :  δ(x,y) = δ(x)δ(y)

τ→0
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Generalized Functions

€ 

Dirac delta functions are not ordinary functions that are defined by their
value at each point. Instead, they are generalized functions that are defined
 by what they do underneath an integral. 

The most important property of the Dirac delta is the sifting property

δ(x − x0)g(x)dx = g(x0−∞

∞

∫ ) where g(x) is a smooth function. This sifting

property can be understood by considering the limiting case 

lim
τ→0

τ−1Π x /τ( )g(x)dx = g(x0−∞

∞

∫ )

g(x)

Area = (height)(width)= (g(x0)/ τ) τ = g(x0)
x0
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Representation of 1D Function

€ 

From  the sifting property, we can write a 1D function as 

g(x) = g(ξ)δ(x −ξ)dξ .
−∞

∞

∫   To gain intuition, consider the approximation

g(x) ≈ g(nΔx) 1
Δx

Π
x − nΔx
Δx

 

 
 

 

 
 

n=−∞

∞

∑ Δx.

g(x)
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Representation of 2D Function

€ 

Similarly, we can write a 2D function as 

g(x,y) = g(ξ,η)δ(x −ξ,y −η)dξdη.
−∞

∞

∫
−∞

∞

∫   

To gain intuition, consider the approximation

g(x,y) ≈ g(nΔx,mΔy) 1
Δx

Π
x − nΔx
Δx

 

 
 

 

 
 

n=−∞

∞

∑ 1
Δy

Π
y −mΔy
Δy

 

 
 

 

 
 ΔxΔym=−∞

∞

∑ .
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Intuition: the impulse response is the response of
a  system to an input of infinitesimal width and
unit area.

Impulse Response

Since any input can be thought of as the
weighted sum  of impulses, a linear system is
characterized by its impulse response(s).

Blurred Image
Original
Image
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Impulse Response

€ 

The impulse response characterizes the response of a system over all space  to a 
Dirac delta impulse function at a certain location. 

        h(x2;ξ) = L δ x1 −ξ( )[ ]                            1D Impulse Response

   h(x2,y2;ξ,η) = L δ x1 −ξ,y1 −η( )[ ]               2D Impulse Response

x1

y1

x2

y2

€ 

h(x2,y2;ξ,η)

€ 

Impulse at ξ,η
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Superposition Integral

€ 

What is the response to an arbitrary function  g(x1,y1)? 

Write g(x1,y1) = g(ξ,η)δ(x1-∞

∞

∫-∞

∞

∫ −ξ,y1 −η)dξdη.

The response is given by
          I(x2,y2) = L g1(x1,y1)[ ]

                         = L g(ξ,η)δ(x1-∞

∞

∫-∞

∞

∫ −ξ,y1 −η)dξdη[ ]
                          = g(ξ,η)L δ(x1 −ξ,y1 −η)[ ]

-∞

∞

∫-∞

∞

∫ dξdη

                          = g(ξ,η)h(x2,y2;ξ,η)
-∞

∞

∫-∞

∞

∫ dξdη
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Space Invariance

€ 

If a system is space invariant, the impulse response depends only
on the difference between the output coordinates and the position of
the impulse and is given by  h(x2,y2;ξ,η) = h x2 −ξ,y2 −η( )
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2D Convolution

€ 

I(x2,y2) = g(ξ,η)h(x2,y2;ξ,η)-∞

∞

∫-∞

∞

∫ dξdη

= g(ξ,η)h(x2 −ξ,y2 −η)-∞

∞

∫-∞

∞

∫ dξdη

= g(x2,y2) **h(x2,y2)

For a space invariant linear system, the superposition integral
becomes a convolution integral.

where ** denotes 2D convolution.  This will sometimes be
abbreviated as *, e.g. I(x2, y2)= g(x2, y2)*h(x2, y2).
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1D Convolution

€ 

I(x) = g(ξ)h(x;ξ)dξ
-∞

∞

∫
= g(ξ)h(x −ξ)

-∞

∞

∫ dξ

= g(x)∗ h(x)

For completeness, here is the 1D version.

Useful fact: 

€ 

g(x)∗δ(x −Δ) = g(ξ)δ(x −Δ −ξ)
-∞

∞

∫ dξ

= g(x −Δ)
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2D Convolution Example

-1/2                        12
x

y

h(x)=rect(x,y)

y

x

g(x)= δ(x+1/2,y) +  δ(x,y)

x
I(x,y)=g(x)**h(x,y)
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2D Convolution Example
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Summary
1. The response to a linear system can be

characterized by a spatially varying impulse
response and the application of the superposition
integral.

2. A shift invariant linear system can be
characterized by its impulse response and the
application of a convolution integral.
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What is a signal?
Discrete-time/space signal: continuous valued
function with a discrete time/space index, denoted as
s[n].

Continuous-time/space signal: continuous valued
function with a continuous time/space index, denoted
as s(t) or s(x).

n

t

Thomas Liu, BE280B, UCSD, Spring 2005

Signal Representation
It’s easiest to start with discrete-time signals, which can be
represented as vectors of either finite or infinite dimension. We’ll
start with finite dimensional vectors since they are easier to think
about.  Consider a finite-time signal with just 3 points. This can
represented as a vector in ℜ3 for real-valued signals or C3 for
complex-valued signals.

x

y

z

€ 

In signal notation :   s[n] =1,1,1

In vector notation :  s =

1
1
1

 

 

 
 
 

 

 

 
 
 
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Basis Vectors

€ 

 s =

1
1
1

 

 

 
 
 

 

 

 
 
 

=

1
0
0

 

 

 
 
 

 

 

 
 
 

1+

0
1
0

 

 

 
 
 

 

 

 
 
 

1+

0
0
1

 

 

 
 
 

 

 

 
 
 

1

The numbers that we use to represent a signal depend on the
choice of basis vectors, or more generally,  basis functions.

x

y

z

Here the unit vectors are used as the
basis vectors.  Note these are just
Kronecker Delta functions! 
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Basis Vectors

€ 

1
1
1

 

 

 
 
 

 

 

 
 
 

=

2 /2
2 /2
0

 

 

 
 
 

 

 

 
 
 

2 +

2 /2
− 2 /2

0

 

 

 
 
 

 

 

 
 
 
0 +

0
0
1

 

 

 
 
 

 

 

 
 
 

1

With this set of basis vectors, the coefficients
of the signal are s[n] = 2,0,1

Any 3 vectors that span 3-dimensional space may be used as
basis vectors.  Recall from linear algebra, that these 3 vectors
must be linearly independent. In other words, any one basis
vector cannot be expressed as a linear sum of the other basis
vectors.  For any basis set, the signal coefficients are simply
the weights of the basis vectors.

x

y

z
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2D Signal

a b

dc 0 0

d0

=

+

+

+

a 0

00

0 b

00

0 0

0c
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Image Decomposition

€ 

g[m,n] = aδ[m,n]+ bδ[m,n −1]+ cδ[m −1,n]+ dδ[m −1,n −1]

= g[k, l]
l= 0

1

∑
k= 0

1

∑ δ[m − k,n − l]

= ck,l
l= 0

1

∑
k= 0

1

∑ bk,l[m,n]

a b

dc 0 0
10

=

+

+

+

a b

c d

1 0
00

0 1
00

0 0
01



17

Thomas Liu, BE280B, UCSD, Spring 2005

Basis Functions Coefficients

x =

Object

Sum1/2 -1/2

1/2 -1/2

1/2 1/2

-1/2 -1/2

1/2 1/2

1/2 1/2

1/2 -1/2

-1/2 1/2

Thomas Liu, BE280B, UCSD, Spring 2005

Example (sinc/rect)
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Examples
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Signal Expansions

€ 

 y[n] = cii=−∞

∞

∑ bi n[ ]

2D discrete expansion is

y[m,n] = ck ,l
l=−∞

∞

∑
k=−∞

∞

∑ bk ,l[m,n]

1D Discrete-Time Series Expansion
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Imaging and Basis Functions
1. Most imaging methods may be considered to be the

process of taking the inner product of an object with a
set of basis functions, where the basis functions are
determined by physics and engineering. In other words,
the basis functions act as our “rulers”  for measuring
the object.

2. Fourier bases show up frequently because the world is
full of harmonic oscillators, e.g. MRI.

3. The basis functions are not necessarily orthogonal.
4. In fact, the “basis” functions usually do not even form

a complete basis, so that the best we can do is
approximate the original object given our
measurements.
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Inner Products

€ 

r,s =

r∗[n]s[n]
n=1

N

∑ for finite - dimensional vectors

r∗[n]s[n]
n=−∞

∞

∑ for infinite - dimensional vectors

r∗(t)s(t)dt
t=−∞

∞

∫ for continuous signals

 

 

 
 
 

 

 
 
 

The norm is defined as 

s = s,s
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Orthogonality

€ 

Some other notations for the inner product :
       x,y = x•y = xT y

Also, recall that the angle between the two vectors is given by

       cosθ =
x,y
x y

Two vectors are orthogonal if x,y = 0,  and therefore θ = π/2.
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Orthonormal basis

€ 

A set of vectors S = bi{ } forms an orthonormal basis, if 
bi ,b j = 0 for i ≠ j, every basis vector is normalized to have unit

length bi =1, and any vector y in the space can be expressed
as a linear combination of the basis vectors, i.e. y = ck

k
∑ bk .

Examples :   Fourier basis, Wavelet basis, Hadamard basis
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Finding Expansion Coefficients

  

€ 

Define the basis matrix as  B = b1 b2 L bN[ ].

Then any vector y = Bc = b1 b2 L bN[ ]

c1

c2

M

cN

 

 

 
 
 
 

 

 

 
 
 
 

Multiply both sides of the equation by B−1, to obtain c = B−1y.
Because the basis vectors are orthonormal BHB = I, and
therefore  B−1 = BH . So, we can also write  c = BH y.
By definition, B is an orthonormal or unitary matrix. 
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Expansion Coefficients

  

€ 

c = BH y =

b1H

b2H

M

bN
H

 

 

 
 
 
 

 

 

 
 
 
 

y =

b1 ,y
b2 ,y

M

bN ,y

 

 

 
 
 
 

 

 

 
 
 
 

For any vector y, the ith expansion coefficient is  the inner
product of the ith orthonormal basis vector with y.
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Orthonormal Signal Expansions

€ 

 y[n] = cii=−∞

∞

∑ bi n[ ]  ci = bi[n],y[n]

2D discrete expansion is

y[m,n] = ck ,l
l=−∞

∞

∑
k=−∞

∞

∑ bk ,l[m,n]   ck ,l = bk ,l[m,n],y[m,n]

1D Discrete-Time Series Expansion


