Neuroscience 200C
Spring Quarter 2005
Imaging/MRI Lecture
тT. Li, N.NEL200c, ucss Spring 2005

Topics

1. Representing Images
2. 2D Fourier Transform
3. MRI Basics
4. MRI Applications
5. fMRI

TT. Liu, NEU200C, UCSD Spring 2005

Signals and Images

Discrete-time/space signal/image: continuous valued function with a discrete time/space index, denoted as $s[n]$ for 1D, $s[m, n]$ for 2 D , etc.
 n
n

Continuous-time/space signal/image: continuous valued function with a continuous time/space index, denoted as $s(t)$ or $s(x)$ for $1 \mathrm{D}, s(x, y)$ for 2 D , etc.

TT. Liu, NeU200c, UCSD Spring 2005

2D Image

Examples

Phasor Diagram
Recall that a complex number has the form
$z=a+j b=|z| \exp (j \theta)=|z|(\cos \theta+j \sin \theta)$
where $|z|=\sqrt{a^{2}+b^{2}}$ and $\theta=\tan ^{-1}(b / a)$
$e^{-j 2 \pi k_{x} x}=\cos \left(2 \pi k_{x} x\right)-j \sin \left(2 \pi k_{x} x\right)$

TT. Liu, NEU200c, UCSD Spring 2005

Interpretation

(b)
$\mathrm{k}_{\mathrm{x}}=0 ; \mathrm{k}_{\mathrm{y}}=0$
$\mathrm{k}_{\mathrm{x}}=0 ; \mathrm{k}_{\mathrm{y}} \neq 0$

TT. Liu, NEU200c, UCSD Spring 2005
Fig 3.12 from Nishimura

Topics

1. Representing Images
2. 2D Fourier Transform
3. MRI Basics
4. MRI Applications
5. fMRI

TT. Liu, NEU200C, UCSD Spring 2005

History of MRI

Late 1970's: First human MRI images
Early 1980's: First commercial MRI systems
1993: functional MRI in humans demonstrated

TT. Liu, NEU200C, UCSD Spring 200

Spin

- Intrinsic angular momentum of elementary particles -- electrons, protons, neutrons.
- Spin is quantized. Key concept in Quantum Mechanics.

Classical Magnetic Moment

$$
\vec{\mu}=\mathrm{IA} \hat{n}
$$

TT. Liu, NEU200c, UCSD Spring 2005

Quantization of Magnetic Moment

The key finding of the SternGerlach experiment is that the magnetic moment is quantized. That is, it can only take on discrete values.

In the experiment, the finding was that the component of magnetization along the direction of the applied field was quantized:

$$
\mu_{z}=+\mu_{0} \text { OR }-\mu_{0}
$$

TT. Liu, NEUZ200C, UCSD Spring 200

Energy in a Magnetic Field

TT. Liu, NEU200c, UCSD Spring 2005

Equilibrium Magnetization

$$
\begin{aligned}
\mathbf{M}_{0} & =N\left\langle\mu_{z}\right\rangle=N\left(\frac{n_{u p}\left(-\mu_{z}\right)+n_{\text {down }}\left(\mu_{z}\right)}{N}\right) \\
& =N \mu \frac{e^{\mu_{z} B / k T}-e^{-\mu_{z} B / k T}}{e^{\mu_{z} B / k T}+e^{-\mu_{z} B / k T}} \\
& \approx N \mu_{z}^{2} B /(k T) \\
& =N \gamma^{2} \hbar^{2} B /(4 k T)
\end{aligned}
$$

$\mathrm{N}=$ number of nuclear spins per unit volume Magnetization is proportional to applied field.

TT. Liu, NEU200c, UCSD Spring 2005

Torque

For a non-spinning magnetic moment, the torque will try to align the moment with magnetic field (e.g. compass needle)

$$
\mathrm{N}=\mu \mathrm{xB}
$$

Torque

Larmor Frequency

$\omega=\gamma B$	Angular frequency in rad/sec
$f=\gamma B /(2 \pi)$	Frequency in cycles/sec or Hertz, Abbreviated Hz

For a 1.5 T system, the Larmor frequency is 63.86 MHz which is 63.86 million cycles per second. For comparison, KPBS-FM transmits at 89.5 MHz .

Note that the earth's magnetic field is about $50 \mu \mathrm{~T}$, so that a 1.5 T system is about 30,000 times stronger.

TT. Liu, NEU200c, UCSD Spring 2005

Magnetization Vector

Vector sum of the magneti
moments over a volume.
For a sample at equilibrium in a magnetic field, the transverse components of the moments cancel out, so that there is only
longitudinal component.
Equation of motion is the same form as for individual moments.
$\mathbf{M}=\frac{1}{V} \sum_{\substack{\text { protons } \\ \text { in } V}} \mu_{i}$

$$
\frac{d \mathbf{M}}{d t}=\gamma \mathbf{M} \times \mathbf{B}
$$

TT. Liu, NEU200C, UCSD Spring 2005

RF Excitation

http://www.easymeasure.co.uk/principlesmri.aspx
TT. Liu, NEU200C, UCSD Spring 2005

Free Induction Decay (FID)

Relaxation

1) Longitudinal component recovers exponentially.
2) Transverse component precesses and decays exponentially.

Fact: Can show that $\mathrm{T}_{2}<\mathrm{T}_{1}$ in order for $|\mathrm{M}(\mathrm{t})| \leq \mathrm{M}_{0}$ Physically, the mechanisms that give rise to T_{1} relaxation also contribute to transverse T_{2} relaxation.
TT. Liu, NeU200c, UCSD Spring 2005

Relaxation

An excitation pulse rotates the magnetization vector away from its equilibrium state (purely longitudinal). The resulting vector has both longitudinal $\mathbf{M}_{\mathbf{z}}$ and tranverse \mathbf{M}_{xy} components.

Due to thermal interactions, the magnetization will return to its equilibrium state with characteristic time constants.
T_{1} spin-lattice time constant, return to equilibrium of $\mathbf{M}_{\mathbf{z}}$
T_{2} spin-spin time constant, return to equilibrium of \mathbf{M}_{xy}

TT. Liu, NEU200C, UCSD Spring 2005

Longitudinal Relaxation

Due to exchange of energy between nuclei and the lattice (thermal vibrations). Process continues until thermal equilibrium as determined by Boltzmann statistics is obtained.

The energy $\Delta \mathrm{E}$ required for transitions between down to up spins, increases with field strength, so that T_{1} increases with \mathbf{B}.

TT. Liu, NEU200C, UCSD Spring 2005

Transverse Relaxation

$$
\frac{d \mathbf{M}_{x y}}{d t}=-\frac{M_{x y}}{T_{2}} \quad \overbrace{\mathrm{x}}^{\mathrm{z}} \overbrace{\mathrm{yx}}^{\mathrm{z}} \overbrace{\mathrm{yx}}^{\mathrm{z}}
$$

Each spin's local field is affected by the z-component of the field due to other spins. Thus, the Larmor frequency of each spin will be slightly different. This leads to a dephasing of the transverse magnetization, which is characterized by an exponential decay.
T_{2} is largely independent of field. T_{2} is short for low frequency fluctuations, such as those associated with slowly tumbling macromolecules.

TT. Liu, NEU200C, UCSD Spring 2005

There is nothing that nuclear spins will not do for you, as long as you treat them as human beings.

Erwin Hahn

TT. Liu, NEU200C, UCSD Spring 2005

T2 Values

	T2 V	lues
Tissue	T ${ }_{2}(\mathrm{~ms})$	Solids exhibit very short T_{2} relaxation times because there are many low frequency interactions between the immobile spins.
gray matter	100	
white matter	92	
muscle	47	
fat	85	
kidney	58	On the other hand, liquids show relatively long T_{2} values, because the spins are highly mobile and net fields average out.
liver	43	
CSF	4000	
Table: adapted from Nishimura, Table 4.2		
TT. Liu, NEU200c, UCSD Spring 20		

TT. Liu, NEU200c, UCSD Spring 2005

Static Inhomogeneities

In the ideal situation, the static magnetic field is totally uniform and the reconstructed object is determined solely by the applied gradient fields. In reality, the magnet is not perfect and will not be totally uniform. Part of this can be addressed by additional coils called "shim" coils, and the process of making the field more uniform is called "shimming". In the old days this was done manually, but modern magnets can do this automatically.

In addition to magnet imperfections, most biological samples are inhomogeneous and this will lead to inhomogeneity in the field. This is because, each tissue has different magnetic properties and will distort the field.

TT. Liu, NEUZ200C, UCSD Spring 200

$\mathrm{T}_{2}{ }^{*}$ decay

The overall decay has the form.

$$
\exp \left(-t / T_{2}^{*}(\vec{r})\right)
$$

where
$\frac{1}{T_{2}^{*}}=\frac{1}{T_{2}}+\frac{1}{T_{2}^{\prime}}$

Due to random motions of spins.
Not reversible.
Due to static inhomogeneities. Reversible with a spin-echo sequence.

TT. Liu, NEUZ200C, UCSD Spring 200

Image Contrast

Different tissues exhibit different relaxation rates, $\mathrm{T}_{1}, \mathrm{~T}_{2}$, and $\mathrm{T}_{2}{ }^{*}$. In addition different tissues can have different densities of protons. By adjusting the pulse sequence, we can create contrast between the tissues. The most basic way of creating contrast is adjusting the two sequence parameters: TE (echo time) and TR (repetition time).

TT. Liu, NEU200C, UCSD Spring 2005

Saturation Recovery Sequence

Gradient Echo ${ }^{\text {TR }}$
TR
$I(x, y)=\rho(x, y)\left[1-e^{-T R / T_{1}(x, y)}\right] e^{-T E / T_{2}^{*}(x, y)}$

Spin $\stackrel{\text { Echo }}{\rightleftarrows}$

$$
I(x, y)=\rho(x, y)\left[1-e^{-T R / T_{1}(x, y)}\right] e^{-T E / T_{2}(x, y)}
$$

TT. Liu, NEU200c, UCSD Spring 2005

T1-Weighted Scans

Make TE very short compared to either T_{2} or $\mathrm{T}_{2}{ }^{*}$. The resultant image has both proton and T_{1} weighting.

$$
I(x, y) \approx \rho(x, y)\left[1-e^{-T R / T_{1}(x, y)}\right]
$$

TT. Liu, NEU200C, UCSD Spring 200 S

T2-Weighted Scans

Make TR very long compared to T_{1} and use a spin-echo pulse sequence. The resultant image has both proton and T_{2} weighting.

$$
I(x, y) \approx \rho(x, y) e^{-T E / T_{2}}
$$

TT. Liu, NEUZ200C, UCSD Spring 2005

Proton Density Weighted Scans

Make TR very long compared to T_{1} and use a very short TE. The resultant image is proton density weighted.

$$
I(x, y) \approx \rho(x, y)
$$

Tt. Liu, NEU200C, UCSD Spring 2005

Example

TT. Liu, NEU200C, UCSD Spring 2005

Gradients

Spins precess at the Larmor frequency, which is proportional to the local magnetic field. In a constant magnetic field $\mathrm{B}_{z}=\mathrm{B}_{0}$, all the spins precess at the same frequency (ignoring chemical shift).

Gradient coils are used to add a spatial variation to B_{z} such that $\mathrm{B}_{\mathrm{z}}(x, y, z)=\mathrm{B}_{0}+\Delta \mathrm{B}_{\mathrm{z}}(x, y, z)$. Thus, spins at different physical locations will precess at different frequencies.

K-space

At each point in time, the received signal is the Fourier transform of the object

$$
s(t)=M\left(k_{x}(t), k_{y}(t)\right)=F[m(x, y)]_{k_{x}(t), k_{y}(t)}
$$

evaluated at the spatial frequencies:

$$
\begin{aligned}
& k_{x}(t)=\frac{\gamma}{2 \pi} \int_{0}^{t} G_{x}(\tau) d \tau \\
& k_{y}(t)=\frac{\gamma}{2 \pi} \int_{0}^{t} G_{y}(\tau) d \tau
\end{aligned}
$$

Thus, the gradients control our position in k-space. The design of an MRI pulse sequence requires us to efficiently cover enough of k-space to form our image.

TT. Liu, NEU200c, UCSD Spring 2009

Topics

1. Representing Images
2. 2D Fourier Transform
3. MRI Basics
4. MRI Applications
5. fMRI

Time of Flight Angiography

TT. Liu, NEU200c, UCSD Spring 200

Fiber Tract Mapping

[^0]

Topics

1. Representing Images
2. 2D Fourier Transform
3. MRI Basics
4. MRI Applications
5. fMRI

Oxygen binds to the iron atoms to form oxyhemoglobin HbO_{2} Release of O_{2} to tissue results in deoxyhemoglobin dHBO_{2}

Effect of dHBO_{2}

dHBO_{2} is paramagnetic due to the iron atoms. As it becomes oxygenated, it becomes less paramagnetic.
dHBO_{2} perturbs the local magnetic fields. As blood becomes more deoxygenated, the amount of perturbation increases and there is more dephasing of the spins. Thus as dHBO_{2} increases we find that $\mathrm{T}_{2}{ }^{*}$ decreases and the amplitude $\exp \left(-\mathrm{TE} / \mathrm{T}_{2}{ }^{*}\right)$ image of a $\mathrm{T}_{2}{ }^{*}$ weighted image will decrease. Conversely as dHBO_{2} decreases, $\mathrm{T}_{2}{ }^{*}$ increases and we expect the signal amplitude to go up.

TT. Liu, NEUZ200C, UCSD Spring 200

[^0]: TT. Liu, NEU200C, UCSD Spring 200

