

Topics

- 1. Representing Images 2. Fourier Transform
- 3. MRI Basics
- 4. fMRI

Eskimo Words for Snow

	tlapa	powder snow			
	tlacringit	snow that is crusted on the surface			
	kayi	drifting snow			
	tlapat	still snow			
	klin	remembered snow			
	naklin	forgotten snow			
	tlamo	snow that falls in large wet flakes			
	tlatim	snow that falls in small flakes			
	tlaslo	snow that falls slowly			
	tlapinti	snow that falls quickly			
	kripya	snow that has melted and refrozen			
	tliyel	snow that has been marked by wolves			
	tliyelin	snow that has been marked by Eskimos			
	tlalman	snow sold to German tourists			
	tlalam	snow sold to American tourists			
	tlanip	snow sold to Japanese tourists			
	tla-na-na	<pre>snow mixed with the sound of old rock and roll from a portable radio</pre>			
	depptla	a small snowball, preserved in Lucite, that had been handled			
		by Johnny Depp			
	http://www.mendosa.com/snow.html				
TT. Liu, NEU200C, UCSD Spring 2008					

$$2D \text{ Fourier Transform}$$

$$G(k_x,k_y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) e^{-j2\pi(k_x x + k_y y)} dx dy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) \cos(2\pi(k_x x + k_y y)) dx dy$$

$$-j \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) \sin(2\pi(k_x x + k_y y)) dx dy$$
TT. Liu, NEU200C, UCSD Spring 2008

History of MRI

Late 1970's: First human MRI images

Early 1980's: First commercial MRI systems

1993: functional MRI in humans demonstrated

Spins

T2 Values				
Tissue grav matter	T ₂ (ms)	Solids exhibit very short T_2 relaxation times because there are many low frequency interactions between the immobile spins. On the other hand, liquids show relatively long T_2 values, because the spins are highly mobile and net fields		
white matter	92 47			
fat	85			
kidney liver	58 43			
CSF	4000			
Table: adapted from Nishimura, Table 4.2 average out. TT. Liu, NEU200C, UCSD Spring 2008				

Static Inhomogeneities

In the ideal situation, the static magnetic field is totally uniform and the reconstructed object is determined solely by the applied gradient fields. In reality, the magnet is not perfect and will not be totally uniform. Part of this can be addressed by additional coils called "shim" coils, and the process of making the field more uniform is called "shimming". In the old days this was done manually, but modern magnets can do this automatically.

In addition to magnet imperfections, most biological samples are inhomogeneous and this will lead to inhomogeneity in the field. This is because, each tissue has different magnetic properties and will distort the field.

Effect of dHBO₂

 $dHBO_2$ is paramagnetic due to the iron atoms. As it becomes oxygenated, it becomes less paramagnetic.

dHBO₂ perturbs the local magnetic fields. As blood becomes more deoxygenated, the amount of perturbation increases and there is more dephasing of the spins. Thus as dHBO₂ increases we find that T_2^* decreases and the amplitude exp(-TE/ T_2^{*}) image of a T_2^* weighted image will decrease. Conversely as dHBO₂ decreases, T_2^* increases and we expect the signal amplitude to go up.

