

Examples

2D Fourier Transform

Fourier Transform
$G\left(k_{x}, k_{y}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) e^{-j 2 \pi\left(k_{x} x+k_{y} y\right)} d x d y$

Inverse Fourier Transform

$$
g(x, y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G\left(k_{x}, k_{y}\right) e^{j 2 \pi\left(k_{x} x+k_{y} y\right)} d k_{x} d k_{y}
$$

Field Inhomogeneities

In the ideal situation, the static magnetic field is totally uniform and the reconstructed object is determined solely by the applied gradient fields. In reality, the magnet is not perfect and will not be totally uniform. Part of this can be addressed by additional coils called "shim" coils, and the process of making the field more uniform is called "shimming". In the old days this was done manually, but modern magnets can do this automatically.

In addition to magnet imperfections, most biological samples are inhomogeneous and this will lead to inhomogeneity in the field. This is because, each tissue has different magnetic properties and will distort the field.

For EPI scans, distortion occurs mostly in the phaseencode direction, since data are acquired more slowly in this directon. For spiral scans, the picture is more complicated

[^0]

Distortions can be reduced by moving more quickly through k-space. This can be achieved with interleaved EPI or Spiral scans, albeit with a loss of temporal resolution.

On modern imaging systems, parallel imaging offers another way of reducing the acquisition time, albeit with a loss of signal-to-noise

Signal Dropouts

Field inhomogeneities also cause the spins to dephase with time and thus for the signal to decrease more rapidly. To first order this can be modeled as an additional decay term.

Spin-echo TE $=35 \mathrm{~ms} \quad$ Gradient Echo $\mathrm{TE}=14 \mathrm{~ms}$
tT Liu, Somi276A. UCSD Winter 2006

[^0]: TTLin SOMI2764 UCSD Winter 2006

