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2D Plane Waves
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e j2π (kxx+kyy ) = cos 2π (kxx + kyy)( ) + j sin 2π (kxx + kyy)( )
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Figure 2.5 from Prince and Link
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2D Fourier Transform
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Examples
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Examples
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2D Fourier Transform

€ 

Fourier Transform 

         G(kx,ky ) = g(x,y)
−∞

∞

∫ e− j2π kxx+kyy( )dxdy
−∞

∞
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Inverse Fourier Transform

        g(x,y) = G(kx,ky )
−∞

∞

∫ e j 2π kxx+kyy( )dkxdky
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Phasor Diagram

€ 

Recall that a complex number has the form

z = a + jb =   z exp( jθ) =  z cosθ + j sinθ( )

where z = a 2 + b2  and  θ = tan−1 b /a( )

e− j2πkxx = cos 2πkx x( )− j sin 2πkx x( )

Real

Imaginary

€ 

θ = −2πkx x
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Interpretation

∆x 2∆x-∆x-2∆x 0
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Interpretation

Fig 3.12 from Nishimura

kx=0; ky=0 kx=0; ky≠0
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Simplified Drawing of Basic Instrumentation.
Body lies on table encompassed by

coils for static field Bo,
     gradient fields (two of three shown),

      and radiofrequency field B1.

MRI System

Image, caption: copyright Nishimura, Fig. 3.15
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Gradient Fields
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Bz(x,y,z) = B0 +
∂Bz
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Interpretation

∆Bz(x)=Gxx

Spins Precess at
at γB0+ γGxx
(faster)

Spins Precess 
at γB0- γGxx
(slower)

x

Spins Precess at γB0



4

TT Liu, SOMI276A, UCSD Winter 2006

Phase with time-varying gradient
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Interpretation

∆x 2∆x-∆x-2∆x 0

∆Bz(x)=Gxx
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K-space trajectory
Gx(t)
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K-space trajectory
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K-space trajectory
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Spin-Warp
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Spin-Warp
Gx(t)

t1 ky

Gy(t)

kx

TT Liu, SOMI276A, UCSD Winter 2006

Spin-Warp Pulse Sequence
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Sampling in k-space
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Aliasing
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Aliasing

Period =1/kx
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Aliasing

Period =1/kx
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K-space trajectories
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EPI Spiral

Credit: Larry Frank TT Liu, SOMI276A, UCSD Winter 2006

Echoplanar Imaging

GE Medical Systems 2003
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Non-Ideal World
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Nyquist Ghosts
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Field Inhomogeneities
In the ideal situation, the static magnetic field is totally uniform
and the reconstructed object is determined solely by the applied
gradient fields. In reality, the magnet is not perfect and will not
be totally uniform. Part of this can be addressed by additional
coils called “shim” coils, and the process of making the field
more uniform is called “shimming”.  In the old days this was
done manually, but modern magnets can do this automatically.

In addition to magnet imperfections, most biological samples
are inhomogeneous and this will lead to inhomogeneity in the
field. This is because, each tissue has different magnetic
properties and will distort the field.
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Field Inhomogeneities
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Faster
Slower

Precesses slower because
of chemical shift or local
inhomogeneities
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For EPI scans, distortion occurs mostly in the phase-
encode direction, since data are acquired more slowly in
this directon. For spiral scans, the picture is more
complicated.

GE Medical Systems 2003

Phase 
Encode
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Top down vs. bottom up 
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Field Map Correction
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Distortions can be reduced by moving more quickly
through k-space.  This can be achieved with interleaved
EPI or Spiral scans, albeit with a loss of temporal
resolution.

On modern imaging systems, parallel imaging offers
another way of reducing the acquisition time, albeit with
a loss of signal-to-noise.
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Spiral SENSE
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Signal  Dropouts

Field inhomogeneities also  cause the spins to dephase with time
and thus for the signal to decrease more rapidly. To first order this
can be modeled as an additional decay term.
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T2
* decay
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exp −t /T2
* v r ( )( )

The overall decay has the form.

€ 

1
T2
* =

1
T2

+
1
′ T 2

where

Due to random motions of spins.
Not reversible. 

Due to static
inhomogeneities. Reversible
with a spin-echo sequence.
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T2
* decay

Gradient echo sequences exhibit T2
* decay. 

Gx(t)

Gy(t)

RF
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Slice select gradient

Slice refocusing gradient

ADC

TE = echo time

Gradient echo has
exp(-TE/T2

*)

weighting
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Spin Echo
Discovered by Erwin Hahn in 1950. 

There is nothing that nuclear spins will not do for you, as
long as you treat them as human beings.  Erwin Hahn

Image: Larry Frank

τ τ180º

The spin-echo can refocus the dephasing of spins due
to static inhomogeneities. However, there will still be
T2 dephasing due to random motion of spins.
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Spin-echo TE = 35 ms       Gradient Echo TE = 14ms


