ECE187
Introduction to Biomedical Imaging
Fall Quarter 2004
MRI Lecture

History of MRI

1946: Felix Bloch (Stanford) and Edward Purcell (Harvard) demonstrate nuclear magnetic resonance (NMR)

1973: Paul Lauterbur (SUNY) published first MRI image in Nature.

History of MRI

Late 1970's: First human MRI images
Early 1980's: First commercial MRI systems

1993: functional MRI in humans demonstrated

Spin

- Intrinsic angular momentum of elementary particles -- electrons, protons, neutrons.
- Spin is quantized. Key concept in Quantum Mechanics.

Classical Magnetic Moment

$\vec{\mu}=\mathrm{IA} \hat{n}$

Force in a Field Gradient

$\mathbf{F}=-\nabla E=\mu_{z} \frac{\partial B_{z}}{\partial z}$

Stern-Gerlach Experiment

The Stern-Gerlach experiment. On the photographic plate are two clear tracks.

Image from http://library.thinkquest.org/19662/high/eng/exp-stern-gerlach.html?tqskip=1
TT. Liu, ECE187, UCSD Fall 2004

Stern-Gerlach Experiment

Image from http://library.thinkquest.org/19662/high/eng/exp-stern-gerlach.html?tqskip=1
TT. Liu, ECE187, UCSD Fall 2004

Quantization of Magnetic Moment

The key finding of the Stern-Gerlach experiment is that the magnetic moment is quantized. That is, it can only take on discrete values.

In the experiment, the finding was that

$$
\mu_{\mathrm{z}}=+\mu_{0} \text { OR }-\mu_{0}
$$

Magnetic Moment and Angular Momentum

A charged sphere spinning about its axis has angular momentum and a magnetic moment.

This is a classical analogy that is useful for understanding quantum spin, but remember that it is only an analogy!

Relation: $\boldsymbol{\mu}=\gamma \mathbf{S}$ where γ is the gyromagnetic ratio and \mathbf{S} is the spin angular momentum.

Quantization of Angular Momentum

Because the magnetic moment is quantized, so is the angular momentum.

In particular, the z -component of the angular momentum Is quantized as follows:
$S_{z}=m_{s} \hbar$
$m_{s} \in\{-s,-(s-1), \ldots s\}$
s is an integer or half intege

TT. Liu, ECE187, UCSD Fall 2004

Hydrogen Proton

Spin 1/2
$S_{z}=\left\{\begin{array}{l}+\hbar / 2 \\ -\hbar / 2\end{array}\right.$
$\mu_{z}=\left\{\begin{array}{l}+\gamma \hbar / 2 \\ -\gamma \hbar / 2\end{array}\right.$

Boltzmann Distribution

$$
\frac{\text { Number Spins Up }}{\text { Number Spins Down }} \quad=\exp (-\Delta \mathrm{E} / \mathrm{kT})
$$

Ratio $=0.999990$ at $1.5 \mathrm{~T}!!!$
Corresponds to an excess of about 10 up spins per million

Equilibrium Magnetization

$$
\begin{aligned}
\mathbf{M}_{0} & =N\left\langle\mu_{z}\right\rangle=N\left(\frac{n_{u p}\left(-\mu_{z}\right)+n_{\text {down }}\left(\mu_{z}\right)}{N}\right) \\
& =N \mu \frac{e^{\mu_{z} B / k T}-e^{-\mu_{z} B / k T}}{e^{\mu_{z} B / k T}+e^{-\mu_{z} B / k T}} \\
& \approx N \mu_{z}^{2} B /(k T) \\
& =N \gamma^{2} \hbar^{2} B /(4 k T)
\end{aligned}
$$

$\mathrm{N}=$ number of nuclear spins per unit volume Magnetization is proportional to applied field.

Torque

For a non-spinning magnetic moment, the torque will try to align the moment with magnetic field (e.g. compass needle)

Precession

Precession

$$
\begin{aligned}
& \frac{\mathrm{d} \boldsymbol{\mu}}{\mathrm{dt}}=\boldsymbol{\mu} \mathbf{x} \boldsymbol{\gamma} \mathbf{B} \\
& \text { Analogous to motion of a gyroscope } \\
& \omega=\gamma B \\
& \text { This is known as the Larmor frequency. }
\end{aligned}
$$

Larmor Frequency

$\omega=\gamma \mathbf{B} \quad$ Angular frequency in rad/sec
$\mathrm{f}=\gamma \mathrm{B} /(2 \pi) \quad$ Frequency in cycles/sec or Hertz, Abbreviated Hz

For a 1.5 T system, the Larmor frequency is 63.86 MHz which is 63.86 million cycles per second. For comparison, KPBS-FM transmits at 89.5 MHz .

Note that the earth's magnetic field is about $50 \mu \mathrm{~T}$, so that a 1.5 T system is about 30,000 times stronger.

TT. Liu, ECE187, UCSD Fall 2004

Magnetization Vector

TT. Liu, ECE187, UCSD Fall 2004
Vector sum of the magnetic moments over a volume.

For a sample at equilibrium in a magnetic field, the transverse components of the moments cancel out, so that there is only a longitudinal component.

Equation of motion is the same form as for individual moments.

RF Excitation

At equilibrium, net magnetizaion is parallel to the main magnetic field. How do we tip the magnetization away from equilibrium?
B_{1} radiofrequency field tuned to Larmor frequency and applied in transverse ($x y$) plane induces nutation (at Larmor frequency) of magnetization vector as it tips away from the z-axis.

- lab frame of reference

From Buxton 2002
TT. Liu, ECE187, UCSD Fall 2004

Relaxation

An excitation pulse rotates the magnetization vector away from its equilibrium state (purely longitudinal). The resulting vector has both longitudinal $\mathbf{M}_{\mathbf{z}}$ and tranverse \mathbf{M}_{xy} components.

Due to thermal interactions, the magnetization will return to its equilibrium state with characteristic time constants.
T_{1} spin-lattice time constant, return to equilibrium of $\mathbf{M}_{\mathbf{z}}$
T_{2} spin-spin time constant, return to equilibrium of \mathbf{M}_{xy}

Longitudinal Relaxation

$$
\frac{d \mathbf{M}_{z}}{d t}=-\frac{M_{z}-M_{0}}{T_{1}}
$$

After a 90 degree pulse $\quad M_{z}(t)=M_{0}\left(1-e^{-t / T_{1}}\right)$
Due to exchange of energy between nuclei and the lattice (thermal vibrations). Process continues until thermal equilibrium as determined by Boltzmann statistics is obtained.

The energy $\Delta \mathrm{E}$ required for transitions between down to up spins, increases with field strength, so that T_{1} increases with \mathbf{B}.

Transverse Relaxation

$$
\frac{d \mathbf{M}_{x y}}{d t}=-\frac{M_{x y}}{T_{2}}
$$

Each spin's local field is affected by the z-component of the field due to other spins. Thus, the Larmor frequency of each spin will be slightly different. This leads to a dephasing of the transverse magnetization, which is characterized by an exponential decay.
T_{2} is largely independent of field. T_{2} is short for low frequency fluctuations, such as those associated with slowly tumbling macromolecules.

T2 Values

Tissue	$\mathrm{T}_{2}(\mathrm{~ms})$
gray matter	100
white matter	92
muscle	47
fat	85
kidney	58
liver	43
CSF	4000

Solids exhibit very
short T_{2} relaxation times because there are many low frequency interactions between the immobile spins.

On the other hand, liquids show relatively long T_{2} values, because the spins are highly mobile and net fields
Table: adapted from Nishimura, Table 4.2 average out.

TT. Liu, ECE187, UCSD Fall 2004

Example

T_{1}-weighted \quad Density-weighted $\quad \mathrm{T}_{2}$-weighted

Bloch Equation

$\mathbf{i}, \mathbf{j}, \mathbf{k}$ are unit vectors in the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ directions.

TT. Liu, ECE187, UCSD Fall 2004

Summary

1) Longitudinal component recovers exponentially.
2) Transverse component precesses and decays exponentially.

Fact: Can show that $\mathrm{T}_{2}<\mathrm{T}_{1}$ in order for $|\mathrm{M}(\mathrm{t})| \leq \mathrm{M}_{0}$
Physically, the mechanisms that give rise to T_{1} relaxation also contribute to transverse T_{2} relaxation.

Transverse Component

$$
\begin{aligned}
& \begin{array}{l}
M \equiv M_{x}+j M_{y} \\
\\
\begin{aligned}
d M / d t & =d / d t\left(M_{x}+i M_{y}\right) \\
& =-j\left(\omega_{0}+1 / T_{2}\right) M
\end{aligned} \\
\begin{aligned}
M(t) & =M(0) e^{-j \omega_{0} t} e^{-t / T_{2}}
\end{aligned} \\
\text { TT. Lii, ECE187, UCSD Fall 2004 }
\end{array}
\end{aligned}
$$

Gradients

Spins precess at the Larmor frequency, which is proportional to the local magnetic field. In a constant magnetic field $\mathrm{B}_{\mathrm{z}}=\mathrm{B}_{0}$, all the spins precess at the same frequency (ignoring chemical shift).

Gradient coils are used to add a spatial variation to B_{z} such that $\mathrm{B}_{\mathrm{z}}(x, y, z)=\mathrm{B}_{0}+\Delta \mathrm{B}_{\mathrm{z}}(x, y, z)$. Thus, spins at different physical locations will precess at different frequencies.

Simplified Drawing of Basic Instrumentation.
Body lies on table encompassed by
coils for static field B_{0},
gradient fields (two of three shown), and radiofrequency field B_{1}.

Image, caption: copyright Nishimura, Fig. 3.15

Gradient Fields

$$
\begin{aligned}
& B_{z}(x, y, z)=B_{0}+\frac{\partial B_{z}}{\partial x} x+\frac{\partial B_{z}}{\partial y} y+\frac{\partial B_{z}}{\partial z} z \\
& \text { z } \quad=B_{0}+G_{x} x+G_{y} y+G_{z} z \\
& \stackrel{\uparrow}{ } \mathrm{y} \\
& G_{z}=\frac{\partial B_{z}}{\partial z}>0 \\
& G_{y}=\frac{\partial B_{z}}{\partial y}>0
\end{aligned}
$$

TT. Liu, ECE187, UCSD Fall 2004

K-space

At each point in time, the received signal is the Fourier transform of the object

$$
\left.s(t)=M\left(k_{x}(t), k_{y}(t)\right)=F[m(x, y)]\right]_{k_{x}(t), k_{y}(t)}
$$

evaluated at the spatial frequencies:

$$
\begin{aligned}
& k_{x}(t)=\frac{\gamma}{2 \pi} \int_{0}^{t} G_{x}(\tau) d \tau \\
& k_{y}(t)=\frac{\gamma}{2 \pi} \int_{0}^{t} G_{y}(\tau) d \tau
\end{aligned}
$$

Thus, the gradients control our position in k-space. The design of an MRI pulse sequence requires us to efficiently cover enough of k -space to form our image.

Time of Flight Angiography

Multislice CASL and PICORE

Diffusion Weighted Images

Diffusion Weighted
Angiogram

After a stroke, normal water movement is restricted in the region of damage. Diffusivity decreases, so the signal intensity increases.

Diffusion Imaging Example

Fiber Tract Mapping

TT. Liu, ECE187, UCSD Fall 2004

fMRI

MRI studies brain anatomy.

TT. Liu, ECE187, UCSD Fall 2004

fMRI Acquisition

High spatial resolution
High temporal resolution

MP-RAGE
Voxel volume: $1 \mathrm{~mm}^{3}$ Imaging time: 6 min

TT. Liu, ECE187, UCSD Fall 2004

EPI
Voxel volume: $45 \mathrm{~mm}^{3}$ Imaging time: 60 msec

Cardiac Tagging

TT. Liu, ECE187, UCSD Fall 2004

