Image Quality Lecture 1

Resident Physics Course March 27, 2006

Topics

Image Contrast

Resolution

Noise

₹UCSD

Contrast

Contrast is the difference in image gray scale between closely adjacent regions in an image.

Types of Contrast are:

Subject Contrast

Detector Contrast

Radiographic Contrast

Digital Image Contrast

Displayed Contrast

Contrast

Contrast

$$C_s = 1 - \exp(-\mu z)$$

As attenuation increases, so does subject contrast

Characteristic Curves

Bushberg et al 2001

Detector Contrast = Slope of Characteristic Curve

Display Contrast

Point Spread Function (PSF)

Intuition: the PSF is the response of a system to an input of infinitesimal width and unit area.

Bushberg et al 2001

For convenience, usually assume PSF is stationary.

(FWHM) is a measure of resolution.

Figure 3.6

An example of the effect of system resolution on the ability to differentiate two points. The FWHM equals the minimum distance that the two points must be separated in order to be distinguishable.

Image Quality, T.T. Liu, Spring 2006

Prince and Link 2005

Convolution

Convolution with PSF blurs object

Bushberg et al 2001

Blurring Mechanisms

- 8. Referring to Figure 1 (above) which demonstrates 3 different line spread functions (LSF), which LSF will yield the best spatial resolution?
- 9. Referring to Figure 1 showing 3 line spread functions, the best choices for the axes labels are _____ for the y-axis and ______ for the x-axis
 - A. frequency, amplitude
 - B. blur distance (mm), frequency
 - C. relative amplitude, frequency
 - D. relative amplitude, distance (mm)
 - E. distance (mm), relative amplitude

A. Relative amplitude, distance (mm)

B. Spatial frequency (lp/mm), distance (mm)

C. Lateral dimension (mm), Fresnel ratio

D. Relative amplitude, spatial frequency (lp/mm)

E. Relative amplitude, relative amplitude

Magnification

Blurring due to magnification of finite source

₹UCSD

Image Quality,

- **D8.** Geometric magnification can improve the detection of high contrast objects. The fundamental limitation on useful magnification is:
 - A. Blurring due to focal spot size.
 - B. Blurring due to removal of the grid.
 - C. H&D curve of the image receptor.
 - D. MTF of the image receptor.
 - E. Size of the image receptor.

D8. A Penumbra, caused by a finite focal spot, increases with magnification. Eventually this dominates the image. The grid, H&D curve, and size have no effect on magnification. The receptor's MTF becomes less important as magnification increases.

Spatial Frequency

Spatial Frequencies

Modulation Transfer Function (MTF) or Frequency Response

Modulation Transfer Function

System MTF = Product of MTFs of Components

Bushberg et al 2001

MTF = Fourier Transform (LTF)

Useful Approximation

$$FWHM_{System} = \sqrt{FWHM_1^2 + FWHM_2^2 + \cdots FWHM_N^2}$$

Example $FWHM_1 = 1mm$ $FWHM_2 = 2mm$ $FWHM_{system} = \sqrt{5} = 2.24mm$

- D74. The intrinsic resolution of a gamma camera is 5 mm. The collimator resolution is 10 mm. The overall system resolution is _____ mm.
 - A. 15
 - B. 11.2
 - C. 7.5
 - D. 5.0
 - E. 0.5

D74. B System resolution is given by: (system resolution)² = (intrinsic resolution)² + (collimator resolution)²

Line Pair Test Phantom

- **D79.** Methods of assessing spatial resolution of an imaging system include all of the following *except:*
 - A. Bar patterns.
 - B. Step wedges.
 - C. Wire mesh pattern.
 - D. Hole pattern.
 - E. Wire impulse response.

Answer: B; step wedges are used to create a gray scale which can be used to evaluate the contrast of the image receptor system

Noise and Image Quality

Low Noise

Medium Noise

High Noise Bushberg et al 2001

Figure 3.10 The effect of noise on image quality: image quality decreases rapidly with increasing noise contamination. Prince and Links 2005

What is Noise?

Fluctuations in either the imaging system or the object being imaged.

Quantization Noise: Due to conversion from analog waveform to digital number.

Quantum Noise: Random fluctuation in the number of photons emitted and recorded.

Thermal Noise: Random fluctuations present in all electronic systems. Also, sample noise in MRI

Other types: flicker, burst, avalanche - observed in semiconductor devices.

Structured Noise: physiological sources, interference

Histograms and Distributions

₹UCSD

Gaussian Distribution

1, 2, and 3 standard deviation intervals correspond to 68%, 95%, and 99% of the observations

Poisson Distribution describes x - ray counting statistics.

Gaussian distribution is good approximation to Poisson when $\sigma = \sqrt{\overline{X}}$

