

G79.	A series of measurements has a mean of 100 counts. A range of $\pm \sigma$ is A. 95-105 B. 90-100
	C. 68–137 D. 50–150 E. 33–167
G80.	To achieve a standard deviation of 2%, counts must be collected. A. 400 B. 1,414 C. 2,500 D. 10,000 E. 40,000
Image Quality, T.	T. Liu, Spring 2006 ₹UCSD

G79.	В	The standard deviation σ is the square root of the mean, in this case $\sqrt{100} = 10$. There is a 68% probability that any random reading will fall within σ of the mean, and a 95% probability that it will fall within 2σ of the mean.
G80.	С	The percent standard deviation, $\%\sigma = (\sigma / N) \times 100 = (\sqrt{N} / N) \times 100 = 100 / \sqrt{N}$. In this case 100 / $\sqrt{N} = 2$, so N = 2500.
Image (Duality	T.T. Liu, Spring 2006
ge (<i>c</i>	······································

G73.	A radioactive sar readings will lie A. 2300 B. 2400 C. 2400 D. 2450 E. 2500	nple is counted a between a 2500 2500 2600 2550 2700	many times, and th and counts.	e mean is 2500 cor	unts. 96% of the
G73. C	If a large num and 96% betw $2500 \pm (2 \times \sigma$	ther of measurem there $\pm 2\sigma$ of the rest	nents are made, apj mean. The standard).	proximately 67% w l deviation $\sigma = \sqrt{N_{c}}$	will fall between $\pm \sigma$, or 50 in this case.
Image Quality	, T.T. Liu, Spring 200	06			₹UCSD

How many counts must be collected in an instrument with zero background to obtain an error limit of 1% with a confidence interval of 95%? A. 1000 B. 3162 C. 10,000 D. 40,000 E. 100,000 D70. A 95% confidence interval means the counts must fall within two standard deviations (SD) of the mean (N). Error limit = 1% = 2 SD/N, but SD = N^{1/2}. Thus $0.01 = 2(N^{1/2})/N = 2/N^{1/2}$. $[0.01]^2 = 4/N$. N = 40,000. **D70.** D ₹UCSD Image Quality, T.T. Liu, Spring 2006

THE 2 \times 2 DECISION MATRIX					
	Actually Abnormal	Actually Normal			
Diagnosed as Abnormal Diagnosed as Normal	True Positive (TP) False Negative (FN)	False Positive (FP) True Negative (TN)			
		- 1100			
mage Quality, T.T. Liu, Spring 2006		₹UCS			

