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• Scans are expensive.
• Subjects can be difficult to find.
• fMRI data are noisy
• A badly designed experiment is

unlikely to yield publishable results.
• Time = Money

Why optimize?

If your result needs a statistician then you should design a
better  experiment. --Baron Ernest Rutherford
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• Statistical Efficiency: maximize
contrast of interest versus noise.

• Psychological factors: is the design
too boring?  Minimize anticipation,
habituation, boredom, etc.

What to  optimize?
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Which is the
best design?

E

It depends on the
experimental
question.
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• Where is the activation?
• What does the hemodynamic response

function (HRF)  look like?

Possible Questions
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1) Assume we know the shape of the HRF
but not its amplitude.

2) Assume we know nothing about the
HRF (neither shape nor amplitude).

3) Assume we know something about the
HRF (e.g. it’s smooth).

Model Assumptions

T.T. Liu August 21, 2007

General Linear Model

y      =      Xh      +      Sb    +  n

Parameters of
Interest

Design
Matrix

Nuisance
Parameters

Nuisance
MatrixData

Additive
Gaussian

Noise
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Example 1: Assumed HRF shape
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Design matrix depends
on both stimulus and
HRF

Parameter = amplitude of response

Stimulus

Convolve w/ HRF
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Design Regressor

⊗ =

The process can be modeled by convolving the activity
curve with a "hemodynamic response function" or HRF

HRF Predicted neural activity

Predicted response
Courtesy of FSL Group and Russ Poldrack
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Example 2: Unknown HRF shape
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× h1

× h2

× h3

× h4

Unknown shape and
amplitude

Note: Design matrix
only depends on
stimulus, not HRF
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FIR design matrix

FIR estimates

Courtesy of Russ Poldrack
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Test Statistic

! 

t "
 parameter estimate

variance of parameter estimate

Thermal noise, physiological noise, low
frequency drifts, motion

Stimulus, neural activity, field strength, vascular state

Also depends on Experimental Design!!!
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Efficiency

! 

Efficiency"
1

Variance of Parameter Estimate
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Efficiency

! 

Example 1:  

Efficiency"
1

Var ˆ h 1( )

! 

Example 2 :  

Efficiency"
1

Var ˆ h 1( ) + Var ˆ h 2( ) + Var ˆ h 3( ) + Var ˆ h 4( )

T.T. Liu August 21, 2007

Known 

Covariance Matrix
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Known as an A-optimal design



T.T. Liu August 21, 2007

General Linear Model

y      =      Xh      +  n

Data
Design
Matrix

Hemodynamic
Response
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Nuisance Functions

However, to keep things simple,  we will ignore the
nuisance term Sb in the GLM for this talk.

Nuisance terms (constant term, linear drift, etc) are a
fact of life in fMRI experiments.

The formulas we derive have the same form when
nuisance terms are considered.  Just replace X by X⊥,
where X⊥  is obtained by projecting the nuisance
terms out of the columns of X.  See Liu et al 2001
and Liu and Frank 2004 for more details.
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Principle of Orthogonality
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Minimum error vector is orthogonal to the

model space.
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Principle of Orthogonality

XXh

! 

XTE = 0

XT y "Xh( ) = 0

y
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Covariance of estimate
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Assume white noise for now

Depends on design
Depends on system, physiology, motion, etc.
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Example 1: Assumed HRF shape

! 

Assume we know the HDR shape h0 but not its amplitude h1

              h = h0h1

! 

GLM :

y = Xh + n

   = Xh
0
h

1
+ n

    = ˜ X h
1

+ n   where ˜ X = Xh
0
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Example 1: Assumed HRF shape

! 

GLM :

y = ˜ X h
1

+ n

Efficiency :
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Efficiency depends on both
the design X and 
the assumed shape h0
(plus intrinsic noise)
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Interpretation

⊗ =

HRF Predicted neural activity

Predicted response

Modified from FSL Group and Russ Poldrack

h0
X

Xh0
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E

! 

Which design 

maximizes h
0

T
X
T
Xh

0
 ?
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Frequency Domain Interpretation
      Boxcar

Randomized ISI
single-event

Regressor

FFT

Low-pass Low-pass

Adapted From S. Smith and R. Poldrack
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Example 2: Unknown HRF Shape
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GLM :

y = Xh + n

Efficiency :
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Efficiency depends only
on the design X
(plus intrinsic noise)
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! 

Which design 

minimizes

Trace X
T
X( )
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[ ] ?

E
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Frequency Domain Interpretation
      Boxcar

Randomized ISI
single-event

Regressor

FFT

Low-pass Low-pass

Adapted From S. Smith and R. Poldrack
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Maximizing Efficiency

! 

Trace X
T
X( )

"1

[ ]  is minimized when the columns of X are 

orthogonal.  

# Shifted versions of the stimuli need to be orthogonal to each other

! 

" Shifted Randomized stimuli are orthogonal on average.

00000

! 

" Shifted Block Designs are not orthogonal
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Knowledge (Assumptions) about HRF

None Some Total
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Depends only on X
Maximized by randomized 
designs

Depends on X and h0
Maximized by 
block designs
Also referred to as
detection power

?
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Detection Power
When detection is the goal,  we want to answer the
question: is an activation present or not?

When trying to detect something, one needs to specify
some knowledge about the “target”.

In fMRI,  the target is approximated by the convolution
of the stimulus with the HRF.

Once we have specified our target (e.g. stimuli and
assumed HRF shape),  the efficiency for estimating the
amplitude of that target can be considered our detection
power.
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Power and Efficiency

Random

SemiRandom
   

Block
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Experimental Data

F-
st

at
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Efficiency vs. Power

Detection Power
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Theoretical Curves
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Basis Functions

! 

If we know something about the shape, we can use a

basis function expansion :  h = Bc

4 basis functions

5 random HDRs using
basis functions

5 random HDRs w/o
basis functions

Here if we assume basis functions, we only need to
estimate 4 parameters as opposed to 20.
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Basis Functions

! 

If we know something about the shape, we can use a

basis function expansion :  h = Bc

Efficiency now depends on both X and B

! 

GLM : y = XBc + n = ˜ X c + n

! 
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Knowledge (Assumptions) about HRF

None Some Total
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Depends on X and B
Maximized by semi-random designs.
Large increases in efficiency as compared
to no assumptions

B = I B =h0
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Efficiency with Basis Functions



T.T. Liu August 21, 2007

Knowledge (Assumptions) about HRF

None Some Total

Experiments where you want
to characterize in detail the
shape of the HDR.

Experiments where you have
a good guess as to the shape
(either a canonical form or
measured HDR)  and want
to detect activation.

A reasonable compromise between 1 and 2.
Detect activation when you sort of know the
shape.  Characterize the shape when you sort of
know its properties
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Question

If block designs are so good for detecting
activation, why bother using other types
of designs?

Problems with habituation and anticipation

Less Predictable
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Entropy
Perceived randomness of an experimental design is an
important factor and can be critical for circumventing
experimental confounds such as habituation and anticipation.

! 

2
H

r is a measure of the average number of possible outcomes. 

Conditional entropy is a measure of randomness in units of bits.

Rth order conditional entropy (Hr) is the average number of
binary (yes/no) questions required to determine the next trial
type given knowledge of the r previous trial types.
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Entropy Example

Maximum entropy is 1 bit, since at most one needs to only ask
one question to determine what the next trial is (e.g. is the next
trial A?). With maximum entropy, 21 = 2  is the number of
equally likely outcomes.

Maximum entropy is 2 bits, since at most one would need to
ask 2 questions to determine the next trial type.  With
maximum entropy, the number of equally likely outcomes to
choose from is 4 (22).

A A N A A N A A A N

A C B N C B A A B C N A
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Efficiency ∝ 2^(Entropy)
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Multiple Trial Types

1 trial type + control (null)

A A N A A N A A A N

Extend to experiments with multiple trial types

A B A B N N A N B B A N A N A

B A D B A N D B C N D N B C N 

T.T. Liu August 21, 2007

Multiple Trial Types GLM

y      =      Xh      +      Sb    +  n

X = [X1 X2  …  XQ]

h = [h1
T

  h2
T  … hQ

T]T
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Multiple Trial Types Overview
Efficiency includes individual trials and also contrasts
between trials.
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Multiple Trial Types Trade-off
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Optimal Frequency
Can also weight how much you care about individual
trials or contrasts.  Or all trials versus events.
Optimal frequency of occurrence depends on weighting.
Example: With Q = 2 trial types, if only contrasts are of
interest p = 0.5. If only trials are of interest,  p = 0.2929.
If both trials and contrasts are of interest p = 1/3.
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Design
As the number of trial types increases, it becomes more
difficult to achieve the theoretical trade-offs. Random
search becomes impractical.

For unknown HDR, should use an m-sequence based
design when possible.

Designs based on block or m-sequences are useful for
obtaining intermediate trade-offs or for optimizing with
basis functions or correlated noise.
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Optimality of m-sequences
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Clustered m-sequences
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Topics we haven’t covered.
The impact of correlated noise -- this will change the
optimal design.

Impact of nonlinearities in the BOLD response.

Other optimization algorithms -- e.g. genetic algorithms.
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Summary
• Efficiency as a metric of design

performance.
• Efficiency depends on both

experimental design and assumptions
about HRF.

• Inherent tradeoff between power
(detection of known HRF) and
efficiency (estimation of HRF)


